ESPNet系列的核心在于空洞卷积金字塔,每层具有不同的dilation rate,在参数量不增加的情况下,能够融合多尺度特征,相对于深度可分离卷积,深度可分离空洞卷积金字塔性价比更高.另外,HFF的多尺度特征融合方法也很值得借鉴   来源:晓飞的算法工程笔记 公众号 ESPNet 论文: ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation 论文地址:https://arxiv.o…
MobileNet系列很重要的轻量级网络家族,出自谷歌,MobileNetV1使用深度可分离卷积来构建轻量级网络,MobileNetV2提出创新的inverted residual with linear bottleneck单元,虽然层数变多了,但是整体网络准确率和速度都有提升,MobileNetV3则结合AutoML技术以及人工微调进行更轻量级的网络构建   来源:晓飞的算法工程笔记 公众号 MobileNetV1 论文: MobileNets: Efficient Convolutiona…
CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量.我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中探讨日后的CNN变革方向. 注:水平所限,下面的见解或许有偏差,望大牛指正.另外只介绍其中具有代表性的模型,一些著名的模型由于原理相同将不作介绍,若有遗漏也欢迎指出. 一.卷积只能在同一组进行吗?-- Group convolution Group convolution 分组卷积,最早在AlexN…
一. PVANet 论文:PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection    [点击下载] Caffe代码:[Github] 设计了一种轻量级的网络,取名叫 PVANet,特点是 Channel少.Layer多,在 VOC2007 和 VOC2012  精确度分别达到了 84.9% 和 84.2%,但计算量不到采用 ResNet-101 网络的 10%. 论文的核心要点: 1)改进的 C.R…
前言 深度卷积网络除了准确度,计算复杂度也是考虑的重要指标.本文列出了近年主流的轻量级网络,简单地阐述了它们的思想.由于本人水平有限,对这部分的理解还不够深入,还需要继续学习和完善. 最后我参考部分列出来的文章都写的非常棒,建议继续阅读. 复杂度分析 理论计算量(FLOPs):浮点运算次数(FLoating-point Operation) 参数数量(params):单位通常为M,用float32表示. 对比 std conv(主要贡献计算量) params:\(k_h\times k_w\ti…
SqueezeNet系列是比较早期且经典的轻量级网络,SqueezeNet使用Fire模块进行参数压缩,而SqueezeNext则在此基础上加入分离卷积进行改进.虽然SqueezeNet系列不如MobieNet使用广泛,但其架构思想和实验结论还是可以值得借鉴的.   来源:晓飞的算法工程笔记 公众号 SqueezeNet 论文: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size 论…
ShuffleNet系列是轻量级网络中很重要的一个系列,ShuffleNetV1提出了channel shuffle操作,使得网络可以尽情地使用分组卷积来加速,而ShuffleNetV2则推倒V1的大部分设计,从实际出发,提出channel split操作,在加速网络的同时进行了特征重用,达到了很好的效果 来源:晓飞的算法工程笔记 公众号 ShuffleNet V1 论文: ShuffleNet: An Extremely Efficient Convolutional Neural Netwo…
空洞卷积, 从图中可以看出,对于一个3*3的卷积,可以通过使用增加卷积的空洞的个数,来获得较大的感受眼, 从第一幅图中可以看出3*3的卷积,可以通过补零的方式,变成7*7的感受眼,这里补零的个数为1,即dilated等于2 空洞卷积在语义分割中的使用较多,因为涉及到向下卷积和向上卷积,为了不使用padding降低图片的维度,造成feature_map的信息损失,同时又可以在一定程度上增加感受眼.使用了这种空洞卷积的方式,增加感受眼,在语义分割中的使用方法是:使用多个不同尺度的空洞卷积,将最后的结…
Dilated Convolutions,中文一般称为空洞卷积或者扩张卷积,是一种改进的图像卷积方法. 扩张卷积工作示意图如下: 图a是普通的卷积,感受野是3*3,相当于扩充dilation=0 图b是扩张卷积,感受野是7*7,dilation=2 图c是扩张卷积,感受野是15*15,dilation=4  扩张卷积中多了一个扩充率参数(dilation rate),用来控制扩张(空洞填充)的大小,扩充率参数越大,同等卷积核大小对应的感受野越大.扩充卷积对普通卷积的改进就是为了获得更大的感受野.…
一.空洞卷积 空洞卷积是是为了解决基于FCN思想的语义分割中,输出图像的size要求和输入图像的size一致而需要upsample,但由于FCN中使用pooling操作来增大感受野同时降低分辨率,导致upsample无法还原由于pooling导致的一些细节信息的损失的问题而提出的.为了减小这种损失,自然需要移除pooling层,因此空洞卷积应运而生. 所谓空洞卷积,有一种理解就是在卷积核中注入空洞(即0),注入的空洞的数量由参数dilation决定,以 卷积核为例,dilation=2即在卷积核…