伪距定位算法(matlab版)】的更多相关文章

在各种伪距定位算法中,最小二乘法是一种比较简单而广泛的方法,该算法可以分为以下几步: 1.准备数据与设置初始值 这里准备数据,主要是对于各颗可见卫星,收集到它们在同一时刻的伪距测量值,计算测量值的各项偏差.误差成分的校正量,然后计算出误差校正后的伪距测量值,这里假设伪距为理想距离加上随机高斯误差.设置初始值,假设大概知道位置坐标,则设定其为初始值,也可根据上一次定位结果设定:若什么都不了解,那么初值设置为0,只不过多几次迭代过程罢了. 2.非线性方程组线性化(不详细解释,就是得到雅克比矩阵).…
本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part6,辑录该书第281至第374页之代码,供有须要读者下载研究使用.代码运行结果请參见原书配图,建议下载代码前阅读下文: 关于<数字图像处理原理与实践(MATLAB版)>一书代码公布的说明 http://blog.csdn.net/baimafujinji/article/details/40987807 P338 i=double(imread('vase.tif'));[C,S]=wavedec2(i,2,…
关于APIT定位算法的讨论 [摘要]   无线传感器网络节点定位机制的研究中,基于距离无关的定位技术得到快速发展,其中基于重叠区域的APIT定位技术在实际环境中的定位精度高,被广泛研究和应用. [关键词] 无线传感器网络:定位算法:APIT: [正文] 在传感网络中的许多应用中,用户一般都会关心一个重要问题,即特定时间发生的具体位置或区域.例如,目标跟踪,入侵检测,环境监控等,若不知道传感器自身的位置,感知的数据是没有意义的.因此,传感器网络及诶单必须知道自身所在的位置,才能够有效地说明被检测物…
                           KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以这样初始化: 之后我们只需要比较i指针指向的字符和j指针指向的字符是否一致.如果一致就都向后移动,如果不一致,如下图: A和E不相等,那就把i指针移回第1位(假设下标从0开始),j移动到模式串的第0位,然后又重新开始这个步骤: 因为主串匹配失败的位置前面除了第一个A之外再也没有A了,我们为什么能知道…
本文系<数字图像处理原理与实践(MATLAB版)>一书的勘误表. [内容简单介绍]本书全面系统地介绍了数字图像处理技术的理论与方法,内容涉及几何变换.灰度变换.图像增强.图像切割.图像去噪.小波变换.形态学处理.多尺度融合.偏微分方程应用.正交变换与图像压缩.边缘及轮廓检測.图像复原.图像去雾.多尺度空间构建与特征匹配等15大核心话题.全部算法均配有完整的MATLAB实现代码.并以此为基础具体介绍了MATLAB中与图像处理有关的近200个函数的用法,便于读者学习与实践.此外,本书还提供了丰富的…
转载自Jiaxing / 2014年2月22日 基本原理 Trilateration(三边测量)是一种常用的定位算法: 已知三点位置 (x1, y1), (x2, y2), (x3, y3) 已知未知点 (x0, y0) 到三点距离 d1, d2, d3 以 d1, d2, d3 为半径作三个圆,根据毕达哥拉斯定理,得出交点即未知点的位置计算公式: ( x1 - x0 )2 + ( y1 - y0 )2 = d12 ( x2 - x0 )2 + ( y2 - y0 )2 = d22 ( x3 -…
本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part2(P43~80),代码运行结果请參见原书配图,建议下载代码前阅读下文: 关于<数字图像处理原理与实践(MATLAB版)>一书代码公布的说明 http://blog.csdn.net/baimafujinji/article/details/40987807 P44 i = imread('theatre.jpg');i = rgb2gray(i);i = double(i); out1 = log(1+i)…
本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part1(P1~42).代码运行结果请參见原书配图. P20 I = imread('lena.jpg');BW1 = im2bw(I);BW2 = im2bw(I, 0.3);BW3 = im2bw(I, 0.6);figuresubplot(2,2,1),imshow(I);title('original');subplot(2,2,2),imshow(BW1);title('\default');subplot(2,2,…
<数字图像处理原理与实践(MATLAB版)>一书之代码Part5 本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part5.辑录该书第225至第280页之代码(此处应部分读者之需求调整了代码公布的顺序--具体说明请见以下的文章链接),供有须要读者下载研究使用.代码运行结果请參见原书配图,建议下载代码前阅读下文: 关于<数字图像处理原理与实践(MATLAB版)>一书代码公布的说明 http://blog.csdn.net/baimafujinji/ar…
一. 引言 如何从一副图片中找到车牌? 这是机器视觉的一个应用. 理所当然地, 思考的角度是从车牌本身的信息入手, 为了讨论方便, 下面均以长窄型蓝白车牌为例. 下图就是这样一张车牌的基本信息. 一眼看过去, 可以得到的信息有: 长宽比 - 3.14, 字符数 - 7, 第一个字符是汉字, 第二个字符是字母, 之后为5个字母/数字混合等距排列. 同时还可以大致了解到, 一个清晰的车牌应该拥有足够多的边缘信息, 换句话说, 边缘信息足够密集地聚集在一个3.14:1的矩形中. 所以今天介绍的算法,…