InceptionV4】的更多相关文章

文章来源: https://www.cnblogs.com/shouhuxianjian/p/7786760.html Feature Extractor[Inception v4] 0. 背景 随着何凯明等人提出的ResNet v1,google这边坐不住了,他们基于inception v3的基础上,引入了残差结构,提出了inception-resnet-v1和inception-resnet-v2,并修改inception模块提出了inception v4结构.基于inception v4的…
目录 1. inception v4 2. Inception-resnet-v1 & Inception-resnet-v2 2.1 Inception-resnet-v1的组成模块 2.2 Inception-resnet-v2的组成模块 3. 模型训练 4. 代码 4.1 Inception-V4 4.2 inception_resnet_v1 4.3 inception_resnet_v2 在下面的结构图中,每一个inception模块中都有一个1∗1的没有激活层的卷积层,用来扩展通道数…
安装brazel    (请使用最新版的brazel  和最新版的tensorflow  ,版本不匹配会出错!!!) 下载bazel-0.23   https://pan.baidu.com/s/1XPYe_yKpPDY-u05PonCsZw             0w7x  chmod +x bazel*****.sh ./bazel***.sh bazel version    可能遇到的错误和解决办法 错误: ERROR: Must specify PROTOC if not boots…
转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers A curated list of the most cited deep learning papers (since 2010) I believe that there exist classic deep learning papers which are worth reading re…
awesome-very-deep-learning is a curated list for papers and code about implementing and training very deep neural networks. Deep Residual Learning Deep Residual Networks are a family of extremely deep architectures (up to 1000 layers) showing compell…
Google Inception Net,ILSVRC 2014比赛第一名.控制计算量.参数量,分类性能非常好.V1,top-5错误率6.67%,22层,15亿次浮点运算,500万参数(AlexNet 6000万).V1降低参数量目的,参数越多模型越庞大,需数据量越大,高质量数据昂贵:参数越多,耗费计算资源越大.模型层数更深,表达能力更强,去除最后全连接层,用全局平均池化层(图片尺寸变1x1),参数大减,模型训练更快,减轻过拟合(<Network in Network>论文),Inceptio…
读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao Xiang, Yonghong Tian Transfer Learning 旧数据训练得到的分类器,在新的数据上重新训练,从而在新数据上取得比较好的表现,新数据与旧数据有相似的地方,但具有不同的分布. Fine tuning一般步骤 这是InceptionV4的图示 移除Softmax分类层 换成与…
前面讲了LeNet.AlexNet和Vgg,这周来讲讲GoogLeNet.GoogLeNet是由google的Christian Szegedy等人在2014年的论文<Going Deeper with Convolutions>提出,其最大的亮点是提出一种叫Inception的结构,以此为基础构建GoogLeNet,并在当年的ImageNet分类和检测任务中获得第一,ps:GoogLeNet的取名是为了向YannLeCun的LeNet系列致敬. 关于深度网络的一些思考 在本系列最开始的几篇文…
上一篇文章我们引出了GoogLeNet InceptionV1的网络结构,这篇文章中我们会详细讲到Inception V2/V3/V4的发展历程以及它们的网络结构和亮点. GoogLeNet Inception V2 GoogLeNet Inception V2在<Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift>出现,最大亮点是提出了Batch Normal…
吐血整理:人工智能PDF中文教材资源包2.73G基本包含全部学习资料 人工智能学习书单(关注微信公众号:aibbtcom获取更多资源) 文末附百度网盘下载地址 人工神经网络与盲信号处理 人工神经网络与模糊信号处理 人工智能(AI)程序设计(面向对象语言) 人工智能 人工智能导论 人工智能基础 人工智能及其应用(蔡自兴) 人工智能入门 人工智能人工神经网络及其语言AI&ANNProgramming in Emacs Lisp 人工智能哲学 深度学习 中文版 深度学习21天学习 深度学习基础(Fun…
一周总结:AutoEncoder.Inception .模型搭建及下周计划   1.AutoEncoder: AutoEncoder: 自动编码器就是一种尽可能复现输入信号的神经网络:自动编码器必须捕捉可以代表输入数据的最重要的因素:类似PCA,找到可以代表原信息的主要成分. 作用:降维表示.也相当于一个神经网络.   2.六种方法解决LSTM循环神经网络中的超长序列问题 http://www.ednchina.com/news/article/20170627LSTM 其中文中最后提到(加粗地…
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公式,也就是神经网络的前向算法.我们一般使用现成的网络,如inceptionV4,mobilenet等. 定义loss,选择优化器,来让loss最小 对数据进行迭代训练,使loss到达最小 在测试集或者验证集上对准确率进行评估 下面我们来看深度学习模型训练中遇到的难点及如何解决 2 模型训练难点及解决…
论文原址:https://arxiv.org/pdf/1409.4842.pdf 代码连接:https://github.com/titu1994/Inception-v4(包含v1,v2,v4)  摘要 本文提出了一个深层的卷积网络结构-Inception,该结构的主要特点是提高了网络内部计算资源的利用率.在预估计算资源消耗量不变的情况下增加网络的深度及宽度.为了进行有效的优化,结构决策基于Hebbian原理及多尺寸处理操作.本文思想的一个经典实现是GoogLeNet,网络的深度为22层,该网…
ResNet可以说是在过去几年中计算机视觉和深度学习领域最具开创性的工作.在其面世以后,目标检测.图像分割等任务中著名的网络模型纷纷借鉴其思想,进一步提升了各自的性能,比如yolo,Inception-v4等. ResNet通过重构模型对残差映射(Residual mapping)进行拟合,而非以往那样拟合期望的潜在映射(Underlying mapping).借助这一举措,ResNet解决了"退化问题"(Degradation problem),使得训练数百甚至数千层网络成为可能,且…
本文来自<ArcFace: Additive Angular Margin Loss for Deep Face Recognition>,时间线为2018年1月.是洞见的作品,一作目前在英国帝国理工大学读博. CNN近些年在人脸识别上效果显著,为了增强softmax loss的辨识性特征学习能力,Sphereface提出的multiplicative angular margin,参考文献[43,44]提出的additive cosine margin等分别通过将角度边际和余弦边际整合到lo…
0. AlexNet 1. VGG VGG网络相对来说,结构简单,通俗易懂,作者通过分析2013年imagenet的比赛的最好模型,并发现感受野还是小的好,然后再加上<network in network>中的\(1*1\)卷积核,使得全文只在卷积网络的深度上做文章,从而得出了网络还是越深越好的结论 VGG 2. Inception 与VGG同期出来的有googlenet,该网络通过关注减少模型参数,而不降低模型性能的角度出发,设计出了inception结构,提出了googlenet: 然后g…
0. 背景 随着何凯明等人提出的ResNet v1,google这边坐不住了,他们基于inception v3的基础上,引入了残差结构,提出了inception-resnet-v1和inception-resnet-v2,并修改inception模块提出了inception v4结构.基于inception v4的网络实验发现在不引入残差结构的基础上也能达到和inception-resnet-v2结构相似的结果,从而认为何凯明等人认为的: "要想得到深度卷积网络必须使用残差结构" 这一…
Google在TensorFlow1.0,之后推出了一个叫slim的库,TF-slim是TensorFlow的一个新的轻量级的高级API接口.这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身”.它类似我们在TensorFlow模块中所介绍的tf.contrib.lyers模块,将很多常见的TensorFlow函数进行了二次封装,使得代码变得更加简洁,特别适用于构建复杂结构的深度神经网络,它可以用了定义.训练.和评估复杂的模型. 这里我们为什么要过来介绍这一节的内容呢?主要是因为Ten…
论文地址 Inception V1 :Going Deeper with Convolutions Inception-v2 :Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Inception-v3 :Rethinking the Inception Architecture for Computer Vision Inception-v4 :Inception-Res…
一.基本概念 Residual Connection: 本质是“短路连接” 如下图阴影部分,通过增加shortcuts,加速训练,从而可以训练出更深的模型(I.R.v2 > Inception v3).更深的模型意味着可以学出更多东西,带来精度的提升. I.R. v2结构,注意到图中inception区块被简化了,比先前的Inception V3种要包含更少的并行塔(parallel towers). Inception模块的特点,是通过这种并联结构减少参数,使得泛化性更好.降低对样本数量的要求…
http://blog.csdn.net/diamonjoy_zone/article/details/70576775 参考: 1. Inception[V1]: Going Deeper with Convolutions 2. Inception[V2]: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 3. Inception[V3]: Rethink…
Densenet的改良—PeleeNET Pelee: A Real-Time Object Detection System on Mobile Devices 论文地址:https://arxiv.org/abs/1804.06882 Peleenet专注于优化小型网络,针对densenet的结构做出了改良,达到了目前最先进的水准.在已有的在移动设备上执行的深度学习模型例如 MobileNet. ShuffleNet 等都严重依赖于在深度上可分离的卷积运算,而缺乏有效的实现.在本文中,来自加…
主要就是对Inception Module的理解 网络结构分析 没有densy layer竟然,这是给手机上运行做铺垫么. 一个新型的模块设计: [不同类型的layer并行放在了一起] 最初的设计: 对上图做以下说明: 1 . 采用不同大小的卷积核意味着不同大小的感受野,最后拼接意味着不同尺度特征的融合: 2 . 之所以卷积核大小采用1.3和5,主要是为了方便对齐.因为设定卷积步长stride=1之后,只要分别设定pad=0.1.2,那么卷积之后便可以得到相同维度的特征,然后这些特征就可以直接拼…
Awesome Torch This blog from: A curated list of awesome Torch tutorials, projects and communities. Table of Contents Tutorials Model Zoo Recurrent Networks Convolutional Networks ETC Libraries Model related GPU related IDE related ETC Links Tutorials…
本文转自:https://zhuanlan.zhihu.com/p/25191377 AI突破性论文及代码实现汇总 极视角 · 2 天前 What Can AI Do For You? “The business plans of the next 10,000 startups are easy to forecast: Take X and add AI.” — Kevin Kelly "A hundred years ago electricity transformed countles…
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 原文链接 摘要 向传统体系结构中引入残差连接使网络的性能变得更好,这提出了一个问题,即将Inception架构与残差连接结合起来是否能带来一些好处.在此,研究者通过实验表明使用残差连接显著地加速了Inception网络的训练.也有一些证据表明,相比没有残差连接的消耗相似的Inception网络,残差Inception网络在性能上具有微…
从LeNet到SENet——卷积神经网络回顾 从 1998 年经典的 LeNet,到 2012 年历史性的 AlexNet,之后深度学习进入了蓬勃发展阶段,百花齐放,大放异彩,出现了各式各样的不同网络,包括 LeNet.AlexNet.ZFNet.VGG.NiN.Inception v1 到 v4.Inception-ResNet.ResNet.WRN.FractalNet.Stochastic Depth.DenseNet.ResNeXt.Xception.SENet.SqueezeNet.N…
1. Parameter pruning and sharing 1.1 Quantization and Binarization Compressing deep convolutional networks using vector quantization Quantized convolutional neural networks for mobile devices Improving the speed of neural networks on cpus Deep learni…
Convolutional Neural Networks ImageNet Models Architecture Design Activation Functions Visualization Fast Convolution Low-Rank Filter Approximation Low Precision Parameter Pruning Transfer Learning Theory 3D Data Hardware ImageNet Models 2017 CVPR Xc…
Awesome系列 Awesome Machine Learning Awesome Deep Learning Awesome TensorFlow Awesome TensorFlow Implementations Awesome Torch Awesome Computer Vision Awesome Deep Vision Awesome RNN Awesome NLP Awesome AI Awesome Deep Learning Papers Awesome 2vec Deep…