预训练模型——开创NLP新纪元】的更多相关文章

预训练模型--开创NLP新纪元 论文地址 BERT相关论文列表 清华整理-预训练语言模型 awesome-bert-nlp BERT Lang Street huggingface models 论文贡献 对如今自然语言处理研究中常用的预训练模型进行了全面的概述,包括背景知识.模型架构.预训练任务.预训练模型的各种扩展.预训练模型的适应方法.预训练模型相关资源和应用. 基于现有的对预训练模型分类方法,从四个不同的角度提出了一个新的分类方法,它从四个不同的角度对现有的原型系统进行分类: 表示类型…
本文介绍了一种新的语言表征模型 BERT--来自 Transformer 的双向编码器表征.与最近的语言表征模型不同,BERT 旨在基于所有层的左.右语境来预训练深度双向表征.BERT 是首个在大批句子层面和 token 层面任务中取得当前最优性能的基于微调的表征模型,其性能超越许多使用任务特定架构的系统,刷新了 11 项 NLP 任务的当前最优性能记录. 研究证明语言模型预训练可以有效改进许多自然语言处理任务,包括自然语言推断.复述(paraphrasing)等句子层面的任务,以及命名实体识别…
“最近刚好在用ERNIE写毕业论文” “感觉还挺厉害的” “为什么叫ERNIE啊,这名字有什么深意吗?” “我想让艾尼帮我写作业” 看了上面火热的讨论,你一定很好奇“艾尼”.“ERNIE”到底是个啥? 自然语言处理( Natural Language Processing,简称NLP )被誉为人工智能“皇冠上的明珠”.NLP为各类企业及开发者提供用于文本分析及挖掘的核心工具,已经广泛应用在电商.文化娱乐.金融.物流等行业客户的多项业务中. 而艾尼(ERNIE),可谓是目前NLP领域的最强中文预训…
2019年3月,百度正式发布NLP模型ERNIE,其在中文任务中全面超越BERT一度引发业界广泛关注和探讨.经过短短几个月时间,百度ERNIE再升级,发布持续学习的语义理解框架ERNIE 2.0,及基于此框架的ERNIE 2.0预训练模型.继1.0后,ERNIE英文任务方面取得全新突破,在共计16个中英文任务上超越了BERT和XLNet, 取得了SOTA效果. 本篇内容可以说是史上最强实操课程,由浅入深完整带大家试跑ERNIE,大家可前往AI Studio fork代码 (https://ais…
先上开源地址: https://github.com/huggingface/pytorch-transformers#quick-tour 官网: https://huggingface.co/pytorch-transformers/index.html PyTorch-Transformers(正式名称为 pytorch-pretrained-bert)是一个用于自然语言处理(NLP)的最先进的预训练模型库. 该库目前包含下列模型的 PyTorch 实现.预训练模型权重.使用脚本和下列模型…
1. BERT简介 Transformer架构的出现,是NLP界的一个重要的里程碑.它激发了很多基于此架构的模型,其中一个非常重要的模型就是BERT. BERT的全称是Bidirectional Encoder Representation from Transformer,如名称所示,BERT仅使用了Transformer架构的Encoder部分.BERT自2018年由谷歌发布后,在多种NLP任务中(例如QA.文本生成.情感分析等等)都实现了更好的结果. BERT的效果如此优异,其中一个主要原…
ERNIE是百度自研的持续学习语义理解框架,该框架支持增量引入词汇(lexical).语法 (syntactic) .语义(semantic)等3个层次的自定义预训练任务,能够全面捕捉训练语料中的词法.语法.语义等潜在信息. ERNIE2.0实现了在中英文16个任务上的最优效果,具体效果见下方列表. 一.ERNIE2.0中文效果验证 我们在 9 个任务上验证 ERNIE 2.0 中文模型的效果.这些任务包括:自然语言推断任务 XNLI:阅读理解任务 DRCD.DuReader.CMRC2018:…
1. 什么是BERT BERT的全称是Bidirectional Encoder Representation from Transformers,是Google2018年提出的预训练模型,即双向Transformer的Encoder,因为decoder是不能获要预测的信息的.模型的主要创新点都在pre-train方法上,即用了Masked LM和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation. Bert最近很火,应该是最近最火爆的A…
1. 什么是XLNet XLNet 是一个类似 BERT 的模型,而不是完全不同的模型.总之,XLNet是一种通用的自回归预训练方法.它是CMU和Google Brain团队在2019年6月份发布的模型,最终,XLNet 在 20 个任务上超过了 BERT 的表现,并在 18 个任务上取得了当前最佳效果(state-of-the-art),包括机器问答.自然语言推断.情感分析和文档排序. 作者表示,BERT 这样基于去噪自编码器的预训练模型可以很好地建模双向语境信息,性能优于基于自回归语言模型的…
2019年7月,百度ERNIE再升级,发布持续学习的语义理解框架ERNIE 2.0,及基于此框架的ERNIE 2.0预训练模型, 它利用百度海量数据和飞桨(PaddlePaddle)多机多卡高效训练优势,通过深度神经网络与多任务学习等技术,持续学习海量数据和知识.基于该框架的艾尼(ERNIE)预训练模型,已累计学习10亿多知识,包括词法.句法.语义等多个维度的自然语言知识,有很强的通用语义表示能力,适用于各种NLP应用场景,效果提升明显,使用高效.便捷. 本篇内容教大家如何下载和使用! 一.预训…