spark:join与cogroup】的更多相关文章

1.RDD[K,V],键值对类型的rdd的函数在PairRDDFunctions这个类中 rdd类中,通过隐士转换让rdd有了PairRDDFunctions这个类里面方法的功能 2.rdd 的join方式 1.join=>rdd[k,v] join rdd[k,w]=>RDD[(K, (V, W))] def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] 2.leftOuterJoin 右边有可…
本文主要介绍spark join相关操作,Java描述. 讲述三个方法spark join,left-outer-join,right-outer-join 我们以实例来进行说明.我的实现步骤记录如下. 1.数据准备 2.HSQL描述 3.Spark描述 1.数据准备 我们准备两张Hive表,分别是orders(订单表)和drivers(司机表),通过driver_id字段进行关联.数据如下: orders hive (gulfstream_test)> select * from orders…
PairRDDFunctions类提供了以下两个join接口,只提供一个参数,不指定分区函数时默认使用HashPartitioner;提供numPartitions参数时,其内部的分区函数是HashPartitioner(numPartitions) def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))] = self.withScope { //这里的defaultPartitioner 就是HashPartitioner,如果指定了HashPart…
在大量数据中对一些字段进行关联. 举例 ipTable:需要进行关联的几千条ip数据(70k) hist:历史数据(百亿级别) 直接join将会对所有数据进行shuffle,需要大量的io操作,相同的key会在同一个partition中进行处理,任务的并发度也收到了限制. 使用broadcast将会把小表分发到每台执行节点上,因此,关联操作都在本地完成,基本就取消了shuffle的过程,运行效率大幅度提高. 样本数据(2000w)性能测试对比 小表没有进行broadcast 进行了broadca…
数据分析中将两个数据集进行 Join 操作是很常见的场景.在 Spark 的物理计划阶段,Spark 的 Join Selection 类会根 据 Join hints 策略.Join 表的大小. Join 是等值 Join 还是不等值以及参与 Join 的 key 是否可以排序等条件来选择最 终的 Join 策略,最后 Spark 会利用选择好的 Join 策略执行最终的计算.当前 Spark 一共支持五种 Join 策略: Broadcast hash join (BHJ) Shuffle…
[training@localhost ~]$ hdfs dfs -cat people.json {"name":"Alice","pcode":"94304"}{"name":"Brayden","age":30,"pcode":"94304"}{"name":"Carla",&quo…
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-sql-joins.html https://acadgild.com/blog/what-is-join-in-apache-spark/ http://spark.apache.org/docs/latest/programming-guide.html https://www.iteblog.com/archives/1566.html http:…
http://blog.csdn.net/lsshlsw/article/details/48975771 https://www.douban.com/note/499691663/ http://blog.csdn.net/kejiaming/article/details/52084898 http://www.cnblogs.com/MOBIN/p/5618747.html#4…
内链接…
前面一篇文章提到大数据开发-Spark Join原理详解,本文从源码角度来看cogroup 的join实现 1.分析下面的代码 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object JoinDemo { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName(this.get…
本文主要介绍spark join相关操作. 讲述spark连接相关的三个方法join,left-outer-join,right-outer-join,在这之前,我们用hiveSQL先跑出了结果以方便进行对比. 我们以实例来进行说明.我的实现步骤记录如下. 1.数据准备 2.HSQL描述 3.Spark描述 1.数据准备 我们准备两张Hive表,分别是orders(订单表)和drivers(司机表),通过driver_id字段进行关联.数据如下: orders orders表有两个字段,订单id…
spark sql 中join的类型 Spark DataFrame中join与SQL很像,都有inner join, left join, right join, full join; 类型 说明 inner join 内连接 left join 左连接 right join 右连接 full join 全连接 spark join 看其原型 def join(right : DataFrame, usingColumns : Seq[String], joinType : String) :…
前言 数据倾斜调优 调优概述 数据倾斜发生时的现象 数据倾斜发生的原理 如何定位导致数据倾斜的代码 查看导致数据倾斜的key的数据分布情况 数据倾斜的解决方案 解决方案一:使用Hive ETL预处理数据 解决方案二:过滤少数导致倾斜的key 解决方案三:提高shuffle操作的并行度 解决方案四:两阶段聚合(局部聚合+全局聚合) 解决方案五:将reduce join转为map join 解决方案六:采样倾斜key并分拆join操作 解决方案七:使用随机前缀和扩容RDD进行join 解决方案八:多…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .简介 1.1 Spark简介 年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处,Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Spark Streaming.MLLib和GraphX等组件,也就是BDAS(伯克利数据分析栈),这些组件逐渐形成大数据处理一站式解决平台.从各方面报道来看Spark抱负并非池鱼,…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark编程模型 1.1 术语定义 l应用程序(Application): 基于Spark的用户程序,包含了一个Driver Program 和集群中多个的Executor: l驱动程序(Driver Program):运行Application的main()函数并且创建SparkContext,通常用SparkContext代表Driver Program: l执行单元(Executor):…
http://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651745207&idx=1&sn=3d70d59cede236eb1cb4f7374387a235&scene=0#rd [技术博客]Spark性能优化指南——高级篇 2016-05-13 李雪蕤 美团技术团队 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调…
压缩过的大数据Spark蘑菇云行动前置课程视频百度云分享链接 链接:http://pan.baidu.com/s/1cFqjQu SCALA专辑 Scala深入浅出经典视频 链接:http://pan.baidu.com/s/1i4Gh3Xb 密码:25jc DT大数据梦工厂大数据spark蘑菇云Scala语言全集(持续更新中) http://www.tudou.com/plcover/rd3LTMjBpZA/ 1 Spark视频王家林第1课:大数据时代的“黄金”语言Scala 2 Spark视…
一.概述 1.轻:(1)采用语言简洁的scala编写:(2)利用了hadoop和mesos的基础设施   2.快:spark的内存计算.数据本地性和传输优化.调度优化,使其在迭代机器学习,ad-hoc query.图计算等方面是hadoop的MapReduce.hive和Pregel无法比拟的   3.灵: (1)实现层:完美演绎了Scala trait动态混入策略(如可更换的集群调度器.序列化库): (2)原语层:允许款站新的数据算子(operator).新的数据源.新的language bi…
为了分享给你们,也为自己. 感谢下面的老师们! 1.王家林DT大数据梦工厂的大数据IMF传奇行动课程 总的目录是: 第一阶段:Linux和Java零基础企业级实战 第二阶段:Hadoop和Hive零基础企业级实战 第三阶段:Scala零基础企业级实战 第四阶段:从零基础到彻底精通第一个Spark实战程序 第五阶段:Spark Core实战.解析.性能优化 第六阶段:Spark SQL企业级实战 第七阶段:Kafka企业级实战 第八阶段:Spark Sreaming企业级实战 第九阶段:Spark…
Spark是基于内存的分布式计算引擎,以处理的高效和稳定著称.然而在实际的应用开发过程中,开发者还是会遇到种种问题,其中一大类就是和性能相关.在本文中,笔者将结合自身实践,谈谈如何尽可能地提高应用程序性能. 分布式计算引擎在调优方面有四个主要关注方向,分别是CPU.内存.网络开销和I/O,其具体调优目标如下: 提高CPU利用率. 避免OOM. 降低网络开销. 减少I/O操作. 第1章 数据倾斜 数据倾斜意味着某一个或某几个Partition中的数据量特别的大,这意味着完成针对这几个Partiti…
http://www.zhihu.com/question/26568496#answer-12035815 Hadoop首先看一下Hadoop解决了什么问题,Hadoop就是解决了大数据(大到一台计算机无法进行存储,一台计算机无法在要求的时间内进行处理)的可靠存储和处理. HDFS,在由普通PC组成的集群上提供高可靠的文件存储,通过将块保存多个副本的办法解决服务器或硬盘坏掉的问题. MapReduce,通过简单的Mapper和Reducer的抽象,将并发.分布式(如机器间通信)和故障恢复等计算…
Spark简述 Spark发源于美国加州大学伯克利分校AMPLab的集群计算平台.它立足 于内存计算.从多迭代批量处理出发,兼收并蓄数据仓库.流处理和图计算等多种计算范式. 特点: 1.轻 Spark 0.6核心代码有2万行,Hadoop1.0为9万行,2.0为22万行. 2.快 Spark对小数据集能达到亚秒级的廷迟,这对于Hadoop MapReduce是无法想象的(因为"心跳"间隔机制,仅任务启动就有数秒的延迟) 3.灵 在实现层,它完美演绎了Scala trait动态混入策略(…
转载自http://www.csdn.net/article/2013-07-08/2816149 Spark已正式申请加入Apache孵化器,从灵机一闪的实验室“电火花”成长为大数据技术平台中异军突起的新锐.本文主要讲述Spark的设计思想.Spark如其名,展现了大数据不常见的“电光石火”.具体特点概括为“轻.快.灵和巧”. 轻:Spark 0.6核心代码有2万行,Hadoop 1.0为9万行,2.0为22万行.一方面,感谢Scala语言的简洁和丰富表达力:另一方面,Spark很好地利用了H…
调试资源分配   Spark 的用户邮件邮件列表中经常会出现 "我有一个500个节点的集群,为什么但是我的应用一次只有两个 task 在执行",鉴于 Spark 控制资源使用的参数的数量,这些问题不应该出现.但是在本章中,你将学会压榨出你集群的每一分资源.推荐的配置将根据不同的集群管理系统(YARN.Mesos.Spark Standalone)而有所不同,我们将主要集中在YARN 上,因为这个Cloudera 推荐的方式.Spark(以及YARN) 需要关心的两项主要的资源是 CPU…
当你开始编写 Apache Spark 代码或者浏览公开的 API 的时候,你会遇到各种各样术语,比如 transformation,action,RDD 等等. 了解到这些是编写 Spark 代码的基础. 同样,当你任务开始失败或者你需要透过web界面去了解自己的应用为何如此费时的时候,你需要去了解一些新的名词: job, stage, task.对于这些新术语的理解有助于编写良好 Spark 代码.这里的良好主要指更快的 Spark 程序.对于 Spark 底层的执行模型的了解对于写出效率更…
当你开始编写 Apache Spark 代码或者浏览公开的 API 的时候,你会遇到各种各样术语,比如transformation,action,RDD(resilient distributed dataset) 等等. 了解到这些是编写 Spark 代码的基础. 同样,当你任务开始失败或者你需要透过web界面去了解自己的应用为何如此费时的时候,你需要去了解一些新的名词: job, stage, task.对于这些新术语的理解有助于编写良好 Spark 代码.这里的良好主要指更快的 Spark…
转自:https://www.cnblogs.com/reed/p/7730338.html 今天做题,其中一道是 请简要描述一下Hadoop, Spark, MPI三种计算框架的特点以及分别适用于什么样的场景. 一直想对这些大数据计算框架总结一下,只可惜太懒,一直拖着.今天就借这个机会好好学习一下. 一张表 名称 发起者 语言 简介 特点 适用场景 Hadoop Yahoo工程师,Apache基金会 Java MapReduce分布式计算框架+HDFS分布式文件系统(GFS)+HBase数据存…
[数据倾斜及调优概述] 大数据分布式计算中一个常见的棘手问题——数据倾斜: 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特别大的话,就会发生数据倾斜.比如大部分key对应10条数据,但是个别key却对应了百万条数据,那么大部分task可能就只会分配到10条数据,然后1秒钟就运行完了:但是个别task可能分配到了百万数据,要运行一两个小时.木桶原理,整个作业的运行进度是由运行…
该部分分为两篇,分别介绍RDD与Dataset/DataFrame: 一.RDD 二.DataSet/DataFrame 先来看下官网对RDD.DataSet.DataFrame的解释: 1.RDD Resilient distributed dataset(RDD),which is a fault-tolerant collection of elements that can be operated on in parallel RDD——弹性分布式数据集,分布在集群的各个结点上具有容错性…