Digit Root ---- 余九定理】的更多相关文章

题目:hdu1013, hdu1163, 51nod1116. or dr(n) = (n-1)%9+1. 其中,n-1是为了将结果0-8匹配到1-9. Reference: [1] https://en.wikipedia.org/wiki/Digital_root [2] https://en.wikipedia.org/wiki/Casting_out_nines…
最小与最大 [问题描述] 做过了乘积最大这道题,相信这道题也难不倒你. 已知一个数串,可以在适当的位置加入乘号(设加了k个,当然也可不加,即分成k+1个部分),设这k+1个部分的乘积(如果k=0,则乘积即为原数串的值)对m 的余数(即mod m)为x; 现求x能达到的最小值及该情况下k的最小值,以及x能达到的最大值及该情况下的k的最小值(可以存在x的最小值与最大值相同的情况). [输入] 第一行为数串,长度为n 满足2<=n<=1000,且数串中不存在0: 第二行为m,满足2<=m<…
题意: 求\(x^2 \equiv a \mod p\) 的所有整数解 思路: 二次剩余定理求解. 参考: 二次剩余Cipolla's algorithm学习笔记 板子: //二次剩余,p是奇质数 ll ppow(ll a, ll b, ll mod){ ll ret = 1; a = a % mod; while(b){ if(b & 1) ret = ret * a % mod; a = a * a % mod; b >>= 1; } return ret; } struct TT…
The Embarrassed Cryptographer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15069   Accepted: 4132 Description The young and very promising cryptographer Odd Even has implemented the security module of a large system with thousands of…
Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29). Take X = 1 for an example. The positive integer divisors of 2004^1…
题目大意:有K组测试数据,然后每组有N个正整数,A1,A2,A3.....An,求出 A1 + A1*A2 + A1*A2*A3 + .......A1*A2*...An 的数根. 分析:有个对9取余的定理是可以直接求树根的,不过拿来玩大数运算也不错.ps.每位可以保存9位数,保存10位数会溢出. 高精度代码如下: ===========================================================================================…
题意:给出一个大数,这个大数由两个素数相乘得到,让我们判断是否其中一个素数比L要小,如果两个都小,输出较小的那个. 分析:大数求余的方法:针对题目中的样例,143 11,我们可以这样算,1 % 11 = 1:      1×10 + 4 % 11 = 3:      3×10 + 3 % 11 = 0;我们可以把大数拆成小数去计算,同余膜定理保证了这个算法的这正确性,而且我们将进制进行一定的扩大也是正确的. 注意:素数打标需要优化,否则超时.   进制需要适当,100和1000都可以,10进制超…
(多项式的)因式分解定理(factor theorem)是多项式剩余定理的特殊情况,也就是余项为 0 的情形. 0. 多项式长除法(Polynomial long division) Polynomial long division - Wikipedia 1. 因式分解定理 Factor theorem 该定理表达的是,多项式 f(x) 存在因子 x−k 当且仅当 f(k)=0(余数为 0,也即 k 是其根). 对于多项式 f(x)=x3+7x2+8x+2, x−1 是否为其因子?f(1)≠0…
数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainder Theorem,又称孙子定理,给出了一元线性同余方程组的有解判定条件,并用构造法给出了通解的具体形式. 现在有方程组:中国剩余定理指出: 扩展中国剩余定理 在一般情况下,要求任两个数互质这个条件太苛刻了,CRT派不上用场,我们需要一个更具普遍性的结论,这就是EX-CRT.虽然是称为EX-CRT,但这个定…
题目: Given a non-negative integer num, repeatedly add all its digits until the result has only one digit. For example: Given num = 38, the process is like: 3 + 8 = 11, 1 + 1 = 2. Since 2 has only one digit, return it. Follow up:Could you do it without…