deep learning 练习1 线性回归练习】的更多相关文章

多变量线性回归(Multivariate Linear Regression) 作业来自链接:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex3/ex3.html 这次的多变量线性回归问题,输入特征向量X是二维的,一个维度表示房间面积,一个维度表示房间数量,输出Y是房子的价格. 这一次试着自己找了一下合适的学习速率和迭代次数 合适的学习速率通过看损失…
线性回归练习 跟着Andrew Ng做做练习:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex2/ex2.html 这一小节做线性回归的小练习,数据摘自上面的网站,其中X是小男孩身高,Y是小男孩年龄,数据集包括50组训练数据. 1,预处理 通过 x = load('ex2x.dat');        y = load('ex2y.dat'); 加载…
Top Deep Learning Projects A list of popular github projects related to deep learning (ranked by stars). Last Update: 2016.08.09 Project Name Stars Description TensorFlow 29622              Computation using data flow graphs for scalable machine lear…
前言 练习内容:Exercise:Softmax Regression.完成MNIST手写数字数据库中手写数字的识别,即:用6万个已标注数据(即:6万张28*28的图像块(patches)),作训练数据集,然后利用其训练softmax分类器,再用1万个已标注数据(即:1万张28*28的图像块(patches))作为测试数据集,用前面训练好的softmax分类器对测试数据集进行分类,并计算分类的正确率. 注意:本实验中,只用原始数据本身作训练集,而并不是从原始数据中提取特征作训练集. 理论知识:S…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门课的 project 中见识过了 deep learning 的效果,最近在做一个东西的时候模型上遇到一点瓶颈于是终于决定也来了解一下这个魔幻的领域. 据说 Deep Learning 的 break through 大概可以从 Hinton 在 2006 年提出的用于训练 Deep Belief…
1 前言 Andrew Ng的UFLDL在2014年9月底更新了. 对于開始研究Deep Learning的童鞋们来说这真的是极大的好消息! 新的Tutorial相比旧的Tutorial添加了Convolutional Neural Network的内容.了解的童鞋都知道CNN在Computer Vision的重大影响. 而且从新编排了内容及exercises. 新的UFLDL网址为: http://ufldl.stanford.edu/tutorial/ 2 Linear Regression…
前言: 本文主要是来练习多变量线性回归问题(其实本文也就3个变量),参考资料见网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex3/ex3.html.其实在上一篇博文Deep learning:二(linear regression练习)中已经简单介绍过一元线性回归问题的求解,但是那个时候用梯度下降法求解时,给出的学习率是固定的0.7.而本次实验…
前言: 在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在logistic回归中的应用,并使用牛顿法来求解模型的参数.参考的网页资料为:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex5/ex5.html.要解决的…
What is deep learning? 在人工智能领域,有一个方法叫机器学习.在机器学习这个方法里,有一类算法叫神经网络.神经网络如下图所示: 上图中每个圆圈都是一个神经元,每条线表示神经元之间的连接.我们可以看到,上面的神经元被分成了多层,层与层之间的神经元有连接,而层内之间的神经元没有连接.最左边的层叫做输入层,这层负责接收输入数据:最右边的层叫输出层,我们可以从这层获取神经网络输出数据.输入层和输出层之间的层叫做隐藏层. 隐藏层比较多(大于2)的神经网络叫做深度神经网络.而深度学习,…
参考, An Intuitive Explanation of Convolutional Neural Networks http://www.hackcv.com/index.php/archives/104/?hmsr=toutiao.io&utm_medium=toutiao.io&utm_source=toutiao.io CNN基础 CNN网络主要用于compute vision 对于图片输入而言,是一种极高维度的数据,比如分辨率1000*1000*3的图,可能会产生3 bil…
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connectionism 神经网络的突破 二.线性代数 1. 标量.向量.矩阵和张量的一般表示方法 2. 矩阵和向量的特殊运算 3. 线性相关和生成子空间 I. 方程的解问题 II. 思路 III. 结论 IV.求解方式 4. 范数norm I. 定义和要求 II. 常用的\(L^2\)范数和平方\(L^2\…
feature study within neural network 在regression问题中,根据房子的size, #bedrooms原始特征可能演算出family size(可住家庭大小), zip code可能演算出walkable(可休闲去处),富人比例和zip code也可能决定了学区质量,这些个可住家庭大小,可休闲性,学区质量实际上对于房价预测有着至关重要的影响,但是他们都无法直接从原始数据输入获取,而是进过hidden layer学习抽象得出的特征. loss functio…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learning What is a Neural Network? 让我们从一个房价预测的例子开始讲起. 假设你有一个数据集,它包含了六栋房子的信息.所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格.这时,你想要拟合一个根据房屋面积预测房价的函数. 如果使用线性回归进行拟合,那么可以拟合出一条直线.但…
为何有必要进修统计机器学习? 因为你没有那么多的数据 因为未知的东西最终还是需理论所解释 基于规则?基于概率? ---- 图灵奖得主.贝叶斯之父 Judea Pearl 谈深度学习局限,想造自由意志机器人 从科学角度来说,基于规则的系统就是错误的.它们为专家建模,而不是对疾病本身建模. 问题在于,程序员创建的规则没有正确的组合.当添加更多新的规则时,你必须撤消旧的规则.它是一个非常脆弱的系统. 例如,如果医院出现程序上的变动,整个系统都必须得重写.而且我们这里谈的规则不是一两个,而是有数百个,包…
第一周:深度学习引言(Introduction to Deep Learning) 欢迎(Welcome) 深度学习改变了传统互联网业务,例如如网络搜索和广告.但是深度学习同时也使得许多新产品和企业以很多方式帮助人们,从获得更好的健康关注. 深度学习做的非常好的一个方面就是读取 X 光图像,到生活中的个性化教育,到精准化农业,甚至到驾驶汽车以及其它一些方面.如果你想要学习深度学习的这些工具,并应用它们来做这些令人窒息的操作,本课程将帮助你做到这一点.当你完成 cousera 上面的这一系列专项课…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
Lesson 1 Neural Network and Deep Learning 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第一门课程的课程笔记. 参考了其他人的笔记继续归纳的. 逻辑回归 (Logistic Regression) 逻辑回归的定义 神经网络的训练过程可以分为前向传播(forward propagation) 和反向传播 (backward propagation) 的 过程.我们通过逻辑回归的例子进行说明. 逻辑回归是一个用于二分类 (binary c…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Full version of a paper at the 8-th International Conference on Applications and Techniques in Information Security (ATIS 2017) [24]. Abstract 我们建立了一个隐私保护的深度学习系统,在这个系统中,许多学习参与者对组合后的数据集执行基于神经网络的深度学习,而实际上没有向中央服务器透露参与者的本地数…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
<Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any function文章总结(前三章翻译在百度云里) 链接:http://neuralnetworksanddeeplearning.com/chap4.html: Michael Nielsen的<Neural Network and Deep Learning>教程中的第四章主要是证明神经网络可以用…
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learn…
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning b…
论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化操作,而maxout是对5个通道的特征图在通道的维度上执行最大化操作 这些论文已经有很多前人帮我们解读了,所以不需要自己再费心理解,非常好,所以自己也不需要再写什么多余的解读了,该说的下面的文献都说了. 基础资料 论文翻译:Maxout Networks,这篇博文讲得非常仔细非常清楚,必须仔细看 其…
理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing co-adaptation of feature detectors” 感觉没什么好说的了,该说的在引用的这两篇博客里已经说得很清楚了,直接做试验吧 注意: 1.在模型的测试阶段,使用”mean network(均值网络)”来得到隐含层的输出,其实就是在网络前向传播到输出层前时隐含层节点的输出值都…
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep learning:五十一(CNN的反向求导及练习) Deep Learning 学习随记(八)CNN(Convolutional neural network)理解 ufldl学习笔记与编程作业:Convolutional Neural Network(卷积神经网络) [UFLDL]Exercise: Co…
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advancements-deep-learning-2016/ 主要挑战是unsupervised learning 无监督学习,2016年大量的研究专注于generative models 生成模型.几大巨头谷歌和脸书分别创新于自然语言处理NLP. 无监督学习 无监督学习指的是在没有额外信息的新数据中,提取…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…