前向计算:没啥好说的,一层一层套着算就完事了 y = f( ... f( Wlayer2T f( Wlayer1Tx ) ) ) 反向求导:链式法则 单独看一个神经元的计算,z (就是logit)对 wi 的偏微分等于 xi : 再看多层的情况,z 经过 激活函数得到 a,而 a 在下一层和 w3 .w4 都进行了计算.所以 C 对 z 求偏微分的话,根据链式法则这两条参数的路径都要去找,且 z' 对 a 的偏微分等于w3,z'' 对 a 的偏微分等于w4 : 到这里重点来了,想象有一个不存在神…