PCA(主成分分析)算法】的更多相关文章

PCA(Principal Component Analysis)主成分分析法的数学原理推导1.主成分分析法PCA的特点与作用如下:(1)是一种非监督学习的机器学习算法(2)主要用于数据的降维(3)通过降维,可以发现人类更加方便理解的特征(4)其他的应用:去燥:可视化等2.主成分分析法的数学原理主要是利用梯度上升法来最优化目标函数,即利用梯度上升法来求取效用函数的最大值,其具体的数学原理推导过程如下所示: 对于以上的函数,因为梯度的向量化表示我们已经求得,因此,我们便可以通过梯度上升法求取函数的…
设有\(m\)个指标,\(n\)个样本的原始数据 将原始数据按列组成矩阵 \(X _ { n \times m }\) 将\(X\) 的每一列进行中心化 求\(X\)的协方差矩阵\(\Sigma _ { X } = \frac { 1 } { n - 1 } X ^ { T } X\) 求出 \(\Sigma _ { X }\) 的特征值及对应的特征向 将特征值按照从大到小构成对角矩阵\(\Lambda = \left( \begin{array} { l l l l } { \lambda _…
一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼就能看出来,数学,物理,化学这三门课的成绩构成了这组数据的主成分(很显然,数学作为第一主成分,因为数据成绩拉的最开). 那么为什么我们能一眼看出来呢? 当然是我们的坐标轴选对了!! 下面,我们继续看一个表格,下标是一组学生的数学,物理,化学,语文,历史,英语成绩统计: 那么这个表我们能一眼看出来吗?…
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简化数据集的技术.主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征.常常应用在文本处理.人脸识别.图片识别.自然语言处理等领域.可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想.流程.优缺点等等.最后通过一个综合案例去实现应用.(本文原…
主成分分析(PCA)是多元统计分析中用来分析数据的一种方法,它是用一种较少数 量的特征对样本进行描述以达到降低特征空间维数的方法,它的本质实际上是K-L变换.PCA方法最著名的应用应该是在人脸识别中特征提取及数据维,我们知 道输入200*200大小的人脸图像,单单提取它的灰度值作为原始特征,则这个原始特征将达到40000维,这给后面分类器的处理将带来极大的难度.著名 的人脸识别Eigenface算法就是采用PCA算法,用一个低维子空间描述人脸图像,同时用保存了识别所需要的信息.下面先介绍下PCA…
以前对PCA算法有过一段时间的研究,但没整理成文章,最近项目又打算用到PCA算法,故趁热打铁整理下PCA算法的知识.本文观点旨在抛砖引玉,不是权威,更不能尽信,只是本人的一点体会. 主成分分析(PCA)是多元统计分析中用来分析数据的一种方法,它是用一种较少数量的特征对样本进行描述以达到降低特征空间维数的方法,它的本质实际上是K-L变换.PCA方法最著名的应用应该是在人脸识别中特征提取及数据维,我们知道输入200*200大小的人脸图像,单单提取它的灰度值作为原始特征,则这个原始特征将达到40000…
PCA 主成分分析 原理概述 用途 - 降维中最常用的手段 目标 - 提取最有价值的信息( 基于方差 ) 问题 - 降维后的数据的意义 ? 所需数学基础概念 向量的表示 基变换 协方差矩阵 协方差 优化目标 降维实例 代码实现 """ 这里假设原始数据集为矩阵 dataMat,其中每一行代表一个样本,每一列代表同一个特征(与上面的介绍稍有不同,上 面是每一列代表一个样本,每一行代表同一个特征). """ import numpy as np ##…
前言            以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的 信息较多.在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反 映此课题的信息有一定的重叠.主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立 尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有…
PCA(主成分分析)方法浅析 降维.数据压缩 找到数据中最重要的方向:方差最大的方向,也就是样本间差距最显著的方向 在与第一个正交的超平面上找最合适的第二个方向 PCA算法流程 上图第一步描述不正确,应该是去中心化,而不是中心化 具体来说,投影这一环节就是:将与特征值对应的k个特征向量分别作为行向量组成特征向量矩阵P 直接乘以特征变量就好.原来是二维数据,降维之后只有一维. 我们想保留几个维度的特征,就留下几个特征值和对应的特征向量.…
PCA主成分分析 PCA目的 最大可分性(最大投影方差) 投影 优化目标 关键点 推导 为什么要找最大特征值对应的特征向量呢? 之前看3DMM的论文的看到其用了PCA的方法,一开始以为自己对于PCA已经有了一定的理解,但是当看到式子的时候发现自己好像对于原理却又不甚明了,所以又回顾了以下PCA的原理,在此写一个总结. PCA目的 主成分分析(principal component analysis, PCA) 是常用的一种降维方法,其目的是为了让数据合理的降维,在降低维度的同时尽量保证数据的原始…
用PCA(主成分分析法)进行信号滤波 此文章从我之前的C博客上导入,代码什么的可以参考matlab官方帮助文档 现在网上大多是通过PCA对数据进行降维,其实PCA还有一个用处就是可以进行信号滤波.网上对此的介绍比较少,正好最近研究了一下,所以把自己的理解记录下来. 对于PCA原理的介绍网上已经有很多帖子,我比较喜欢的是这个:PCA的数学原理.文章把PCA降维定性和数学理解分析得生动且透彻,这里不再重复. 直接上干货吧,简单一个例子: 给定信号: 其中有用信号为三个频率不同且幅值相位不相同的余弦函…
作者:拾毅者 出处:http://blog.csdn.net/Dream_angel_Z/article/details/50760130 Github源代码:https://github.com/csuldw/MachineLearning/tree/master/PCA PCA(principle component analysis) .主成分分析,主要是用来减少数据集的维度,然后挑选出基本的特征.原理简单,实现也简单.关于原理公式的推导,本文不会涉及,你能够參考以下的參考文献,也能够去W…
链接1 链接2(原文地址) PCA的数学原理(转) PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学…
opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as np import os import cv2 # plt显示灰度图片 def plt_show(img): plt.imshow(img,cmap='gray') plt.show() # 读取一个文件夹下的所有图片,输入参数是文件名,返回文件地址列表 def read_directory(dire…
基本思想 其基本思想就是设法提取数据的主成分(或者说是主要信息),然后摒弃冗余信息(或次要信息),从而达到压缩的目的.本文将从更深的层次上讨论PCA的原理,以及Kernel化的PCA. 引子 首先我们来考察一下,这里的信息冗余是如何体现的.如下图所示,我们有一组二维数据点,从图上不难发现这组数据的两个维度之间具有很高的相关性.因为这种相关性,我们就可以认为其实有一个维度是冗余的,因为当已知其中一个维度时,便可以据此大致推断出另外一个维度的情况. 为了剔除信息冗余,我们设想把这些数据转换到另外一个…
通过数据压缩(降维)可以减少特征数量,可以降低硬盘和内存的存储,加快算法的训练. 还可以把高维的数据压缩成二维或三维,这样方便做数据可视化. 数据压缩是通过相似或者相关度很高的特征来生成新的特征,减少特征数量.例如,上图x1是厘米,x2是英寸,这两个特征相关度很高,可以压缩成一个特征. ====================================== 主成分分析(Principal Component Analysis, PCA)是常用的降维算法. 例如,要将二维数据压缩成一维数据,…
1.PCA算法介绍主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理.一般我们获取的原始数据维度都很高,比如1000个特征,在这1000个特征中可能包含了很多无用的信息或者噪声,真正有用的特征才100个,那么我们可以运用PCA算法将1000个特征降到100个特征.这样不仅可以去除无用的噪声,还能减少很大的计算量. PCA算法是如何实现的? 简单来说,就是将数据从原始的空间中转换到新的特征空间中,例如原始的空间是三维的(x,y,…
引言 当面对的数据被抽象为一组向量,那么有必要研究一些向量的数学性质.而这些数学性质将成为PCA的理论基础. 理论描述 向量运算即:内积.首先,定义两个维数相同的向量的内积为: (a1,a2,⋯,an)T⋅(b1,b2,⋯,bn)T=a1b1+a2b2+⋯+anbn 内积运算将两个向量映射为一个实数.其计算方式非常容易理解,但是其意义并不明显.所以,我们分析内积的几何意义.假设A和B是两个n维向量,我们知道n维向量可以等价表示为n维空间中的一条从原点发射的有向线段,为了简单起见我们假设A和B均为…
1.背景         PCA(Principal Component Analysis),PAC的作用主要是减少数据集的维度,然后挑选出基本的特征.         PCA的主要思想是移动坐标轴,找到方差最大的方向上的特征值.什么叫方差最大的方向的特征值呢.就像下图中的曲线B.一样.它的覆盖范围最广. 基本步骤:(1)首先计算数据集的协方差矩阵                    (2)计算协方差矩阵的特征值和特征向量                    (3)保留最重要的n个特征 wh…
PCA: Principal Components Analysis,主成分分析. 1.引入 在对任何训练集进行分类和回归处理之前,我们首先都需要提取原始数据的特征,然后将提取出的特征数据输入到相应的模型中.但是当原始数据的维数特别高时,这时我们需要先对数据进行降维处理,然后将降维后的数据输入到模型中. PCA算法是专门用来对高维数据进行降维而设计,通过将高维数据降维后得到的低维数能加快模型的训练速度,并且低维度的特征具有更好的可视化性质.另外,数据的降维会导致一定的信息损失,通常我们可以设置一…
参考链接:http://deeplearning.stanford.edu/wiki/index.php/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90 http://deeplearning.stanford.edu/wiki/index.php/%E7%99%BD%E5%8C%96 引言 主成分分析(PCA)是一种能够极大提升无监督特征学习速度的数据降维算法.更重要的是,理解PCA算法,对实现白化算法有很大的帮助,很多算法都先用白化算法作预处理步骤…
主成分分析(PCA)是一种经典的降维算法,基于基变换,数据原来位于标准坐标基下,将其投影到前k个最大特征值对应的特征向量所组成的基上,使得数据在新基各个维度有最大的方差,且在新基的各个维度上数据是不相关的,PCA有几个关键的点: 1)归一化均值与方差,均值归一化后便于计算,方差归一化后便于对各个维度进行比较 2)新基为正交基,即各个坐标轴是相互独立的(可理解为垂直),只需要取新基上取方差最大的前几个维度即可 3)PCA的前提是只对服从高斯分布的数据特征提取效果较好,这就大大限制了它的应用范围.如…
转载地址:http://blog.csdn.net/watkinsong/article/details/38536463 1. 前言 PCA : principal component analysis ( 主成分分析) 最近发现我的一篇关于PCA算法总结以及个人理解的博客的访问量比较高, 刚好目前又重新学习了一下PCA (主成分分析) 降维算法, 所以打算把目前掌握的做个全面的整理总结, 能够对有需要的人有帮助. 自己再看自己写的那个关于PCA的博客, 发现还是比较混乱的, 希望这里能过做好…
主成分分析(PCA, Principal Component Analysis) 一个非监督的机器学习算法 主要用于数据的降维处理 通过降维,可以发现更便于人类理解的特征 其他应用:数据可视化,去噪等 主成分分析是尽可能地忠实再现原始重要信息的数据降维方法 原理推导: 如图,有一个二维的数据集,其特征分布于特征1和2两个方向 现在希望对数据进行降维处理,将数据压缩到一维,直观的我们可以想到将特征一或者特征二舍弃一个,可以得到这样的结果 ------- : 舍弃特征1之后 ------- : 舍弃…
1.什么是PCA? PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法.PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征.PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相关的.其中,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第1,2…
PCA(Principal Components Analysis)主成分分析是一个简单的机器学习算法,利用正交变换把由线性相关变量表示的观测数据转换为由少量线性无关比变量表示的数据,实现降维的同时尽量减少精度的损失,线性无关的变量称为主成分.大致流程如下: 首先对给定数据集(数据是向量)进行规范化,使得数据集的平均值为0,方差为1(规范化是为了使数据散布在原点附近,而不是远离原点的某块区域,便于后面的计算).之后对每个数据进行正交变换,把数据投影到几个少量的相互正交的方向(这些方向构成了数据空…
问题 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到一个数学系的本科生期末考试成绩单,里面有三列,一列是对数学的兴趣程度,一列是复习时间,还有一列是考试成绩.我们知道要学好数学,需要有浓厚的兴趣,所以第二项与第一项强相关,第三项和第二项也是强相关.那是不是可以合并第一项和第二项呢? 3. 拿到一个样本,特征非常多,而样例特别少,这样用回归去直接拟合非常困难,容易过度拟合.比如北京的房价:假设房子…
在之前的博客  人脸识别经典算法一:特征脸方法(Eigenface)  里面介绍了特征脸方法的原理,但是并没有对它用到的理论基础PCA做介绍,现在做补充.请将这两篇博文结合起来阅读.以下内容大部分参考自斯坦福机器学习课程:http://cs229.stanford.edu/materials.html 假设我们有一个关于机动车属性的数据集{x(i);i=1,...,m}(m代表机动车的属性个数),例如最大速度,最大转弯半径等.假设x(i)本质上是n维的空间的一个元素,其中n<<m,但是n对我们…
原文载于此:http://blog.csdn.net/zhongkelee/article/details/44064401 一.PCA简介 1. 相关背景 上完陈恩红老师的<机器学习与知识发现>和季海波老师的<矩阵代数>两门课之后,颇有体会.最近在做主成分分析和奇异值分解方面的项目,所以记录一下心得体会. 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数…
PCA(Principal Components Analysis),它是一种“投影(projection)技巧”,就是把高维空间上的数据映射到低维空间.比如三维空间的一个球,往坐标轴方向投影,变成了一个圆.球是3维的,圆是2维的.在球变成圆的这个投影过程中,丢失了原来物体(球)的一部分“性质”---圆不是球了,只有面积没有体积了:也保留了原来物体的一部分性质---圆 和 球 还是很像的…… 而对于一个训练样本y而言,假设它有M个特征(M维),y={y1, y2,...yM},通过PCA,进行投…