首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
A-01 最小二乘法
】的更多相关文章
机器学习:R语言中如何使用最小二乘法
详细内容见上一篇文章:http://www.cnblogs.com/lc1217/p/6514734.html 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题. 代码如下:(数据同上一篇博客)(是不是很简单????) > x<-c(6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2) > y<-c(5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3) > lsfit(x,y…
机器学习:Python中如何使用最小二乘法
之所以说"使用"而不是"实现",是因为python的相关类库已经帮我们实现了具体算法,而我们只要学会使用就可以了.随着对技术的逐渐掌握及积累,当类库中的算法已经无法满足自身需求的时候,我们也可以尝试通过自己的方式实现各种算法. 言归正传,什么是"最小二乘法"呢? 定义:最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配. 作用:利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误…
机器学习:scipy和sklearn中普通最小二乘法与多项式回归的使用对
相关内容连接: 机器学习:Python中如何使用最小二乘法(以下简称文一) 机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法(以下简称文二) 有些内容已经在上面两篇博文中提到了,所以就不重复了.这里主要讲的是sklearn包与scipy包中相关函数的区别.并且多项式回归和普通最小二乘法联系比较紧密,所以也放到此处讲了. 1.普通最小二乘法 1)文一中的数据采用sklearn包的函数拟合 from sklearn import linear_model import numpy…
Hinge Loss、交叉熵损失、平方损失、指数损失、对数损失、0-1损失、绝对值损失
损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示.损失函数越小,模型的鲁棒性就越好. 损失函数分为经验风险损失函数和结构风险损失函数.经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项.通常表示为如下:(整个式子表示的意思是找到使目标函数最小时的θ值.) 常见的损失误差有6种: 铰链损失(Hinge Loss):主要用于支持向量机(SVM) 中:…
最小二乘法 及python 实现
参考 最小二乘法小结 机器学习:Python 中如何使用最小二乘法 什么是” 最小二乘法” 呢 定义:最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配. 作用:利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小. 原则:以” 残差平方和最小” 确定直线位置 (在数理统计中,残差是指实际观察值与估计值之间的差) 数学公式: 基本思路:对于一元线性回归模型, 假设从总体中获取了 n 组观察值(X1,Y…
最小二乘法多项式曲线拟合原理与实现 zz
概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x). 原理 [原理部分由个人根据互联网上的资料进行总结,希望对大家能有用] 给定数据点pi(xi,yi),其中i=1,2,…,m.求近似曲线y= φ(x).并且使得近似曲线与y=f(x)的偏差最小.近似曲线在点pi处的偏差δi= φ(xi)-y,i=1,2,...,m. 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小 3.使偏差平方…
推荐系统之最小二乘法ALS的Spark实现
1.ALS算法流程: 初始化数据集和Spark环境----> 切分测试机和检验集------> 训练ALS模型------------> 验证结果-----------------> 检验满足结果---->直接推荐商品,否则继续训练ALS模型 2.数据集的含义 Rating是固定的ALS输入格式,要求是一个元组类型的数据,其中数值分别是如下的[Int,Int,Double],在建立数据集的时候,用户名和物品名需要采用数值代替 /** * A more compact clas…
matlab和C语言实现最小二乘法
参考:https://blog.csdn.net/zengxiantao1994/article/details/70210662 Matlab代码: N = ; x = [ ]; y = [ ]; subplot(,,); plot(x,y,'*'); % 图形的一些设置 xlabel('时间(秒)'); ylabel('位移(米)'); title('原始数据离散点') grid on subplot(,,); p = polyfit(x,y,); %得出P就是线性拟合的系数 % : x1…
转悠望南山 Python闲谈(二)聊聊最小二乘法以及leastsq函数
1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线→一点”视角与“多点→一线”视角 最小二乘法非常简单,我把它分成两种视角描述: (1)已知多条近似交汇于同一个点的直线,想求解出一个近似交点:寻找到一个距离所有直线距离平方和最小的点,该点即最小二乘解: (2)已知多个近似分布于同一直线上的点,想拟合出一个直线方程:设该直线方程为y=kx+b,调整参…
Python闲谈(二)聊聊最小二乘法以及leastsq函数
1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线→一点”视角与“多点→一线”视角 最小二乘法非常简单,我把它分成两种视角描述: (1)已知多条近似交汇于同一个点的直线,想求解出一个近似交点:寻找到一个距离所有直线距离平方和最小的点,该点即最小二乘解: (2)已知多个近似分布于同一直线上的点,想拟合出一个直线方程:设该直线方程为y=kx+b,调整参数k…