P2458 [SDOI2006]保安站岗 没学树形DP的,看一下. 题目大意:一棵树有N个节点,现在需要将所有节点都看守住,如果我们选择了节点i,那么节点i本身,节点i的父亲和儿子都会被看守住. 每个节点有一个选择代价,求完成任务所需要的最小的代价. 分析:根据每个节点其实有只有三个状态: ①被自己看守:②被儿子看守:③被父亲看守. 我们设这三种状态分别为F1,F2,F3. 当然最终作为答案的根节点没有父亲就没有F3. 接下来我们要考虑怎么转移. 首先看F1,我们规定F1[ i ]代表的是i节点…
题目传送门 解题思路: 树形DP 可知一个点被控制有且仅有一下三种情况: 1.被父亲节点上的保安控制 2.被儿子节点上的保安控制 3.被当前节点上的保安控制 我们设dp[0/1/2][u]表示u节点所在子树中全部被控制的最小代价,0表示只有u节点尚未被控制(等待被其父亲节点控制): 1表示u节点已经被控制,但u节点上没有保安,所以不能去控制其父亲节点:2表示u节点上有保安 (机房的神犇说多维数组要把小的那一维写在前面,因为可以优化常数,原理请自行翻阅一本通) 转移:(以下设v是u的儿子节点) d…
题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互相望见.总经理要求所有通道的每个端点(树的顶点)都要有人全天候看守,在不同的通道端点安排保安所需的费用不同. 一个保安一旦站在某个通道的其中一个端点,那么他除了能看守住他所站的那个端点,也能看到这个通道的另一个端点,所以一个保安可能同时能看守住多个端点(树的结点),因此没有必要在每个通道的端点都安排…
P2458 [SDOI2006]保安站岗 题意 题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互相望见.总经理要求所有通道的每个端点(树的顶点)都要有人全天候看守,在不同的通道端点安排保安所需的费用不同. 一个保安一旦站在某个通道的其中一个端点,那么他除了能看守住他所站的那个端点,也能看到这个通道的另一个端点,所以一个保安可能同时能看守住多个端点…
dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿子节点对父亲节点进行更新. 树形dp很多题需要在二叉树上进行. 进入正题. 点我看题 这个图是洛谷题面里奇奇怪怪的东西,格式弄好就这样. 题意:有一棵已知根(1)的二叉树,每条边都有一个权值,现在可以保留 q 条边,问在这样的前提下,以 1 为根 的树最多能有多少权值和. 题意可以画个图来解释 这个…
洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 \(x\) 子树内的点选/不选的状态,且 \(x\) 子树内必须要被覆盖的点都被覆盖,\(x\) 的 \(1\sim j\) 级祖先都被覆盖了的最小代价,再设 \(g_{x,j}\) 表示 \(x\) 子树内距离 \(x\ge j\) 的必须要被覆盖的点都被覆盖,而 \(x\) 子树内距离 \(x\) \(&…
洛谷题面传送门 神仙级别的树形 dp. u1s1 这种代码很短但巨难理解的题简直是我的梦魇 首先这种题目一看就非常可以 DP 的样子,但直接一维状态的 DP 显然无法表示所有情况.注意到对于这类统计一个路径上权值之和的最值这样的问题,我们可以考虑借鉴 P4383 林克卡特树 的套路,即在 DP 状态中多记录一维 \(j\) 存储当前路径的延伸情况.但是这道题与 林克卡特树 的不同之处在于路径并非是简单路径,即一条路径可以先向上走一段,再向下走一段,接着再向上走一段.因此考虑这样设计 DP 状态:…
题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互相望见.总经理要求所有通道的每个端点(树的顶点)都要有人全天候看守,在不同的通道端点安排保安所需的费用不同. 一个保安一旦站在某个通道的其中一个端点,那么他除了能看守住他所站的那个端点,也能看到这个通道的另一个端点,所以一个保安可能同时能看守住多个端点(树的结点),因此没有必要在每个通道的端点都安排…
题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互相望见.总经理要求所有通道的每个端点(树的顶点)都要有人全天候看守,在不同的通道端点安排保安所需的费用不同. 一个保安一旦站在某个通道的其中一个端点,那么他除了能看守住他所站的那个端点,也能看到这个通道的另一个端点,所以一个保安可能同时能看守住多个端点(树的结点),因此没有必要在每个通道的端点都安排…
题目链接 看起来似乎跟最小点覆盖有点像.但区别在于: 最小点覆盖要求所有边在其中,而本题要求所有点在其中. 即:一个点不选时,它的儿子不一定需要全选. 画图理解: 对于这样一幅图,本题中可以这样选择:3,53,53,5: 333将相邻的点2,42,42,4覆盖,而555将相邻的点1,61,61,6覆盖,因此所有点都被覆盖了. 那么就必须修改状态了. Dynamic Programing 考虑对于一个点,如果它被覆盖了,只有三种可能: 自己被标记 父亲被标记 儿子被标记 因此我们设计状态: dp[…
传送门 给出一棵n" role="presentation" style="position: relative;">nn个点的树,每个点上有Ci" role="presentation" style="position: relative;">CiCi头牛,问每个点k" role="presentation" style="position: relat…
第一次自己写树形DP的题,发个博客纪念`- 题目来源:P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了.所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数. 输入输出格式 输入格式: 第一行一个整数N.(1<=N<=60…
题目链接 题目背景 一座城市,往往会被人们划分为几个区域,例如住宅区.商业区.工业区等等.B市就被分为了以下的两个区域--城市中心和城市郊区.在着这两个区域的中间是一条围绕B市的环路,环路之内便是B市中心. 题目描述 整个城市可以看做一个N个点,N条边的单圈图(保证图连通),唯一的环便是绕城的环路.保证环上任意两点有且只有2条路径互通.图中的其它部分皆隶属城市郊区. 现在,有一位名叫Jim的同学想在B市开店,但是任意一条边的2个点不能同时开店,每个点都有一定的人流量Pi,在该点开店的利润就等于该…
题目:https://www.luogu.org/problemnew/show/P2585 可以把不是绿色的记成一种.仔细一想不会有冲突.如果自己是绿色,孩子的不同颜色不会冲突:如果自己不是绿色,自己的不是绿色的孩子对于自己就像二分图一样的感觉,所以总有方案使得不区分另外两种颜色也不会有冲突. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using na…
题目:https://www.luogu.org/problemnew/show/P1131 记录 x 子树内同步的时间 f[x],同步所需代价 g[x]: 直接转移即可,让该儿子子树与其它儿子同步,只需要在自己到儿子的那一条边上改动. 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef lon…
P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat… 题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of course, she would like to choose the most convenient location for the gathering to take place. Each cow lives in on…
点此看题面 大致题意: 有一棵树,给出每个叶节点的点权(互不相同),非叶节点\(x\)至多有两个子节点,且其点权有\(p_x\)的概率是子节点点权较大值,有\(1-p_x\)的概率是子节点点权较小值.假设根节点\(1\)号节点的点权有\(m\)种可能性,其中权值第\(i\)小的可能点权是\(V_i\),可能性为\(D_i\),求\(\sum_{i=1}^mi\cdot V_i\cdot D_i^2\). 前言 好妙的题目,像我这种蒟蒻根本想不到线段树合并还可以这么玩. 同时,在无数个地方漏掉\(…
题目:https://www.luogu.org/problemnew/show/P2279 题意:一棵树.在节点处建消防站,可以覆盖与他距离在2之内的节点.问最少要建多少个消防站,可以覆盖所有的节点. 思路:有一种贪心的思路,看大部分题解都是这样. 如果要覆盖当前节点(自己不建),那么可能是父亲,兄弟,祖父建了. 但是我们发现,在祖父建覆盖的范围比父亲兄弟要更广一些.所以就贪心的取深度最深的节点,在他的祖父处建一个. 因为想练dp所以没写贪心的. 看结构感觉是树形dp.$dp[i]$表示以$i…
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益.问受益最大值是多少. 输入格式 第一行包含两个整数 N, K .接下来 N-1 行每行三个正整数 fr, to, dis , 表示该树中存在一条长度为 dis 的边 (fr, to) .输入保证所有点之间是联通的. 输出格式 输出一个正整数,表示收益的最大值…
题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了.所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数. 输入格式 第一行一个整数N.(1<=N<=6000) 接下来N行,第i+1行表示i号职员的快乐指数Ri.(-128<=Ri<=127…
luogu传送门 题目描述: 某大学有n个职员,编号为1~n. 他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司. 现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数 ri​,但是呢,如果某个职员的直接上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了. 所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数.   一道树形DP的板子题. 状态转移方程看代码. #include <bits/stdc++.h> using…
传送门啦 分析: 树形dp刚刚入门,这是我做的第一个一个点同时受父亲节点和儿子节点控制的题目. 由于这个题中某一个点放不放保安与父亲和儿子都有关系(因为线段的两个端点嘛),所以我们做题时就要考虑全面. 假设dp数组为f[i][j]:其中f[i][0]表示选择自己(本身这个点),f[i][1]表示自己不选,儿子选(不选本身这个点,而选择这个点的儿子节点),f[i][2]表示自己不选,父亲选(不选本身这个点而选择这个点的父亲节点) 有点啰嗦... 看了我的dp数组大家可能有疑问了,树形dp不是用儿子…
洛谷 2014 选课 没学树形DP的,看一下. 首先要学会多叉树转二叉树. 树有很多种,二叉树是一种人人喜欢的数据结构,简单而且规则.但一般来说,树形动规的题目很少出现二叉树,因此将多叉树转成二叉树就是一种必备的手段,方法非常简单,“左儿子,右兄弟” .就是将一个节点的第一个儿子放在左儿子的位置,下一个儿子,即左儿子的第一个兄弟,放在左儿子的右儿子位置上,再下一个兄弟接着放在右儿子的右儿子,以此类推. 代码: scanf("%d%d",&u,&v) //v的父亲是u )…
题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互相望见.总经理要求所有通道的每个端点(树的顶点)都要有人全天候看守,在不同的通道端点安排保安所需的费用不同. 一个保安一旦站在某个通道的其中一个端点,那么他除了能看守住他所站的那个端点,也能看到这个通道的另一个端点,所以一个保安可能同时能看守住多个端点(树的结点),因此没有必要在每个通道的端点都安排…
洛谷题目传送门 通过瞪眼法发现,\(a_{i,j}=(i-1)\text{ xor }(j-1)+1\). 二维差分一下,我们只要能求\(\sum\limits_{i=0}^x\sum\limits_{j=0}^y[i\text{ xor }j\le k]\)就好了. 比较套路的数位DP. 从高位往低位做,设\(f[t][0/1][0/1][0/1]\)表示到第\(t\)位,\(i,j,i\text{ xor }j\)已确定的值是否卡到\(x,y,k\)前\(t\)位的上界的方案数和权值和. 每…
次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵的最大值 那么我们定义3个数组 l[i][j]表示(i,j)能到达最左边的坐标 r[i][j]表示(i,j)能到达最右边的坐标 up[i][j]表示(i,j)能向上最大距离 即线的长度 那么状态转移方程得出: l[i][j]=max(l[i][j],l[i-][j]);//满足条件的最大值为左边(因…
洛谷P3959:https://www.luogu.org/problemnew/show/P3959 前言 NOIP2017时还很弱(现在也很弱 看出来是DP 但是并不会状压DP 现在看来思路并不复杂 只是存状态有点难想到 思路 因为n最大为12 所以可以想到是状压 因为n<=12 所以可以用邻接矩阵存下图 枚举每个点作为起点开始DFS 注意每次DFS的初始化和赋值问题即可 代码 #include<iostream> #include<cstdio> #include<…
题目链接 位运算+\(DP\)=状压\(DP\)?(雾 \(a\&b>=min(a,b)\)在集合的意义上就是\(a\subseteq b\) 所以对每个数的子集向子集连一条边,然后答案就是这个\(DAG\)的最长链了,跑一遍拓扑排序就行了. 直接连边的复杂度是\(O(n^2)\),显然只能拿\(60'\). 题解里的连边方法我没怎么懂然后因为穷又不能看直播讲解 但是我拿到\(70\)分暴力分后(不要问我为什么有70)看了别人的代码,发现一个很巧妙的方法, 无需建图,\(DP\)的思想,我写…
题面 Bzoj 洛谷 题解 首先考虑从儿子来的贡献: $$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$ 根据容斥原理,就是儿子直接亮的概率减去当儿子不亮且他们之间的路径均不直接亮时的概率 接着考虑从父亲来的贡献,设$p$为:$\frac{g[u]\times f[u]}{f[v]+(1-f[v])\times(1-dis[i])}$ 则:(画画图就可以理解) $$ g[v]=p+(1-p)\times(1-dis[i]) $…
题面 洛谷 题解 \(f[i][j]\)表示有i个人参与游戏,从庄家(即1)数j个人获胜的概率是多少 \(f[1][1] = 1\) 这样就可以不用讨论淘汰了哪些人和顺序 枚举选庄家选那张牌, 枚举下一次的庄家 可以得到这次的庄家 然后转移即可 Code #include<bits/stdc++.h> #define LL long long #define RG register using namespace std; template<class T> inline void…