[深度学习]TensorFlow安装】的更多相关文章

深度学习   深度学习学习目标: 1. TensorFlow框架的使用 2. 数据读取(解决大数据下的IO操作) + 神经网络基础 3. 卷积神经网络的学习 + 验证码识别的案例   机器学习与深度学习的区别 机器学习与深度学习的区别 1 特征提取方面 2 数据量和计算性能要求    3 算法代表 例如: 机器学习: 数据输入 –> 人工进行特征工程(需要大量专业领域知识) –> 分类算法计算 –> 得出结论 深度学习: 数据数据 –> 神经网络(通过将数据进行层层传递创建模型,自…
virtualenv 可以用来建立一个专属于项目的python环境,保持一个干净的环境.只需要通过命令创建一个虚拟环境,不用的时候通过命令退出,删除.实践证明用虚拟环境能避免很多糟心的事. 下面介绍一下安装方法: 安装 virtualenv; 安装 virtualenvwrapper; 安装 Numpy,Scipy,Matplotlib 等Python科学计算的库; 1.安装 virtualenv $ sudo pip install virtualenv 然后建立一个测试目录: $ mkdir…
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 softmax   这里用到的tf基本知识 tf.tensor-张量,其实就是矩阵.官方说法是原料 tf.Varible-变量,用来记录数据,参数.其实也是个矩阵.不过要初始化后才有具体的值 tf.Session()-会话,就是个模型,我们可以在里面添加数据流动方向,运算节点 香农熵 香农熵是计算信息…
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- coding: utf-8 -*- """ Created on Fri May 25 14:09:45 2018 @author: Administrator """ #导入数据集 from tensorflow.examples.tutoria…
用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学习之二:Neural art http://phunter.farbox.com/post/mxnet-tutorial2…
深度学习Tensorflow相关书籍推荐和PDF下载 baihualinxin关注 32018.03.28 10:46:16字数 481阅读 22,673 1.机器学习入门经典<统计学习方法>pdf下载 链接:https://pan.baidu.com/s/1o99BsV4 密码:b2ul 2. 周志华的<机器学习>pdf下载 链接:https://pan.baidu.com/s/1htFmlM0 密码:fx8y 3. <数学之美>吴军博士著pdf下载 链接:https…
最近在研究Tensorflow Serving生产环境部署,尤其是在做服务器GPU环境部署时,遇到了不少坑.特意总结一下,当做前车之鉴. 1 系统背景 系统是ubuntu16.04 ubuntu@ubuntu:/usr/bin$ cat /etc/issue Ubuntu 16.04.5 LTS \n \l 或者 ubuntu@ubuntu:/usr/bin$ uname -m && cat /etc/*release x86_64 DISTRIB_ID=Ubuntu DISTRIB_RE…
1.下载安装Keras 如果你是安装的Anaconda组合套件,可以直接在Prompt上执行安装命令:pip install keras 注意:最下面为Successfully...表示安装成功! 2.简介 Keras为图片数据输入提供了一个很好的接口,即Keras.preprocessing.image.ImageDataGenerator类,该类生成一个数据生成器Generator对象,依照循环批量生成对应于图像信息的多维矩阵.根据后台运行环境的不同(例如:TensorFlow,Theano…
个core可以有不同的代码路径.对于反向传播算法来说,基本计算就是矩阵向量乘法,对一个向量应用激活函数这样的向量化指令,而不像在传统的代码里会有很多if-else这样的逻辑判断,所以使用GPU加速非常有用. 但即使这样,单机的计算能力还是相对有限的. 深度学习开源工具 从数学上来讲,深度神经网络其实不复杂,我们定义不同的网络结构,比如层次之间怎么连接,每层有多少神经元,每层的激活函数是什么.前向算法非常简单,根据网络的定义计算就好了. 而反向传播算法就比较复杂了,所以现在有很多深度学习的开源框架…
2. 神经网络的搭建以及迁移学习的测试 7.项目总结 通过本次水果图片卷积池化全连接试验分类项目的实践,我对卷积.池化.全连接等相关的理论的理解更加全面和清晰了.试验主要采用python高级编程语言的TensorFlow和Keras这两个库.在实验学习的过程中,开始时,对于TensorFlow和Keras并不是很了解,里面提供的许多方法也不熟悉,但经过老师课堂的讲解和演示一些关键的.和常用的方法或函数,以及对相关参数的传递.变化,如:权值的变化.图片尺寸的变化.图片通道的变化.偏置的设置.优化函…