「JSOI2015」送礼物】的更多相关文章

「JSOI2015」送礼物 传送门 看到这题首先想到分数规划. 我们发现对于当前区间,如果它的最大值和最小值不是分居区间的两个端点的话,那么我们显然可以把两端多出去的部分舍掉,因为,在区间最大值最小值都不变的情况下,区间肯定是越短越优的. 但是要注意一点就是区间长度也是有下界的. 所以说我们就先处理所有区间长度为下界 \(L\) 的情况,然后再对区间长度位于 \([L + 1, R]\) 的区间做处理. 二分答案 \(mid\) ,假设当前区间是 \([l, r]\) 那么就有: \[ \fra…
CH2401 送礼物 描述 作为惩罚,GY被遣送去帮助某神牛给女生送礼物(GY:貌似是个好差事)但是在GY看到礼物之后,他就不这么认为了.某神牛有N个礼物,且异常沉重,但是GY的力气也异常的大(-_-b),他一次可以搬动重量和在w(w<=2^31-1)以下的任意多个物品.GY希望一次搬掉尽量重的一些物品,请你告诉他在他的力气范围内一次性能搬动的最大重量是多少. 输入格式 第一行两个整数,分别代表W和N. 以后N行,每行一个正整数表示G[i],G[i]<= 2^31-1. 输出格式 仅一个整数,…
「JSOI2015」串分割 传送门 首先我们会有一个贪心的想法:分得越均匀越好,因为长的绝对比短的大. 那么对于最均匀的情况,也就是 \(k | n\) 的情况,我们肯定是通过枚举第一次分割的位置,然后每一段长度 \(\frac{n}{k}\) 最后取最小的. 把这个思想运用到一般情况:如果分出来两段长短不一,那么长的只会比短的那个长度多 \(1\) ,再仔细想想,所有段只会有两种不同的长度 \(\lfloor \frac{n}{k} \rfloor, \lceil \frac{n}{k} \r…
「JSOI2015」isomorphism 传送门 我们还是考虑树哈希来判同构. 但是我们需要使用一些特殊的手段来特殊对待假节点. 由于是无向树,我们首先求出重心,然后以重心为根跑树哈希. 此处我们不计算假节点的个数对子树大小的贡献.需要注意的是无向树可能有两个重心. 树哈希的时候,假节点儿子的哈希值也直接向上贡献(因为假节点有且只有一个儿子). 这样我们就可以求出一颗无向树的简化树的哈希值,之后的问题就轻松解决了. 参考代码: #include <algorithm> #include &l…
「JSOI2015」symmetry 传送门 我们先考虑构造出原正方形经过 \(4\) 种轴对称变换以及 \(2\) 种旋转变换之后的正方形都构造出来,然后对所得的 \(7\) 个正方形都跑一遍二维哈希,这样我们就可以通过哈希,在 \(O(n ^ 2)\) 时间内判断原正方形中是否存在某一类型的某一大小的子正方形. 但是如果我们枚举边长,复杂度就会达到 \(O(n ^ 3)\) 级别,显然过不了. 考虑优化:我们发现对于任意一种类型的正方形,它把最外面一圈去掉之后还是满足原来的性质,所以我们可以…
「JSOI2015」地铁线路 传送门 第一问很简单:对于每条线路建一个点,然后所有该条线路覆盖的点向它连边,权值为 \(1\) ,然后它向所有线路上的点连边,权值为 \(0\) . 然后,跑一边最短路就可以求出第一问了. 接下来考虑第二问. 我们在最短路图上面跑 \(\text{DP}\) 我们把所有线路按照 \(dis\) 排序,然后用距离为 \(dis - 1\) 的线路来更新. 我们发现如果一条最短路为 \(d\) 的线路上出现了一个最短路为 \(d\) 的点,那么显然我们不会在这里上车,…
「JSOI2015」染色问题 传送门 虽然不是第一反应,不过还是想到了要容斥. 题意转化:需要求满足 \(N + M + C\) 个条件的方案数. 然后我们就枚举三个数 \(i, j, k\) ,表示当前方案中,至少不用 \(k\) 种颜色,至少不涂 \(i\) 行.至少不涂 \(j\) 列. 然后直接组合数算(式子不难看懂),最后容斥即可. 那么写出来就是: \[ ans = \sum_{i = 0}^n \sum_{j = 0}^m \sum_{k = 0}^c (-1)^{i + j +…
「JSOI2015」圈地 传送门 显然是最小割. 首先对于所有房子,权值 \(> 0\) 的连边 \(s \to i\) ,权值 \(< 0\) 的连边 \(i \to t\) ,然后对于所有的墙,连两条边,连接起墙两边的房子,容量就是修墙的费用,然后直接用权值和 - 最小割就是最大收益. 参考代码: #include <cstring> #include <cstdio> #define rg register #define file(x) freopen(x&qu…
「JSOI2015」最小表示 传送门 很显然的一个结论:一条边 \(u \to v\) 能够被删去,当且仅当至少存在一条其它的路径从 \(u\) 通向 \(v\) . 所以我们就建出正反两张图,对每个点开两个 bitset 维护它与其他点的连通性,这个可以通过拓扑排序预处理. 然后就枚举每一条边,拿两个端点的两个 bitset 与一下即可判断出这条边是否可以删去. 参考代码: #include <cstdio> #include <bitset> #define rg regist…
「JSOI2015」套娃 传送门 考虑贪心. 首先我们假设所有的套娃都互相不套. 然后我们考虑合并两个套娃 \(i\),\(j\) 假设我们把 \(i\) 套到 \(j\) 里面去,那么就可以减少 \(b_j \times out_i\) 的花费. 我们有一种 贪心策略就是说把所有套娃按 \(b\) 从大到小排序,然后每次找一个 \(out\) 最大的让它套. 我们可以这么证明正确性: 对于四个套娃 \(i, j, k, l\) ,假设 \(b_i > b_j, out_k > out_l\)…