Mutual Information】的更多相关文章

本文根据以下参考资料进行整理: 1.维基百科:https://zh.wikipedia.org/wiki/%E4%BA%92%E4%BF%A1%E6%81%AF 2.新浪博客:http://blog.sina.com.cn/s/blog_6255d20d0100ex51.html     在概率论和信息论中,两个随机变量的互信息(Mutual Information,简称MI)或转移信息(transinformation)是变量间相互依赖性的量度.不同于相关系数,互信息并不局限于实值随机变量,它…
实验室最近用到nmi( Normalized Mutual information )评价聚类效果,在网上找了一下这个算法的实现,发现满意的不多. 浙江大学蔡登教授有一个,http://www.zjucadcg.cn/dengcai/Data/code/MutualInfo.m ,他在数据挖掘届地位很高,他实现这个算法的那篇论文引用率高达三位数.但这个实现,恕个人能力有限,我实在是没有看懂:变量命名极为个性,看的如坠云雾:代码倒数第二行作者自己添加注释why complex,我就更不懂了:最要命…
Robust and Fast 3D Scan Alignment Using Mutual Information 使用互信息进行稳健快速的三维扫描对准 https://arxiv.org/pdf/1709.06948.pdf Nikhil Mehta, James R. McBride and Gaurav Pandey Abstract—This paper presents a mutual information (MI) based algorithm for the estimat…
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的文章,个人非常喜欢,也列出来了. 33. SIFT关于SIFT,实在不需要介绍太多,一万多次的引用已经说明问题了.SURF和PCA-SIFT也是属于这个系列.后面列出了几篇跟SIFT有关的问题.[1999 ICCV] Object recognition from local scale-invar…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 注意:Registration可翻译为“配准”或“匹配”,一般是图像配准,特征匹配(特征点匹配). MIA] Image matching as a diffusion process[…
Point-wise Mutual Information (Yao, et al 2019) reclaimed a clear description of Point-wise Mutual Information as below: \[ PMI(i, j) = \log \frac{p(i,j)}{p(i)p(j)} \\ p(i, j) = \frac{\#(i,j)}{\#W} \\ p(i) = \frac{\#(i)}{\#W} \] where \(\#(i)\) is th…
  半全局立体匹配算法Semi-Global Matching,SGM由学者Hirschmüller在2005年所提出1,提出的背景是一方面高效率的局部算法由于所基于的局部窗口视差相同的假设在很多情况下并不成立导致匹配效果较差:而另一方面全局算法虽然通过二维相邻像素视差之间的约束(如平滑性约束)而得到更好的匹配效果,但是对内存的占用量大,速度慢.为了结合两者的优点,同时避免两者的缺点,SGM算法依旧采用全局框架,但是在计算能量函数最小化的步骤时使用高效率的一维路径聚合方法来代替全局算法中的二维最…
Mutal Information, MI, 中文名称:互信息. 用于描述两个概率分布的相似/相关程度. 常用于衡量两个不同聚类算法在同一个数据集的聚类结果的相似性/共享的信息量. 给定两种聚类结果\(X,Y\), 现在用MI来衡量它们之间的相似程度 计算方式为: \[ MI(X, Y) = \sum_{u \in U} \sum_{v in V} p(u, v)log \frac{p(u, v)}{p(u)p(v)} \] 其中\(U=set(X), V = set(Y)\)(set()为去重…
[论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1) 解决问题 现有的基于GAN的方法大多都是先假设服从一个高斯分布,然后再来学习节点嵌入(匹配节点嵌入向量服从这个假设的先验分布). 这可能存在两个问题: 一个问题是(由于真实数据是有很多噪声的,所以会为GAN模型学习的分布带来很多噪声)很难从节点向量表示中区分出噪声节点,因为所有节点都是服从…
目录 Entropy Joint Entropy Conditional Entropy Chain rule Mutual Information Relative Entropy Chain Rules Chain Rule for Entropy Chain Rule for Mutual Information Conditional Mutual Information Chain Rule for Relative Entropy Jensen's Inequality Proper…