LUOGU P1978 集合】的更多相关文章

题目描述 集合是数学中的一个概念,用通俗的话来讲就是:一大堆数在一起就构成了集合.集合有如 下的特性: •无序性:任一个集合中,每个元素的地位都是相同的,元素之间是无序的. •互异性:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次. •确定性:给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居 其一,不允许有模棱两可的情况出现. 例如 A = {1, 2, 3} 就是一个集合.我们可以知道, 1 属于 A ,即 1 ∈ A : 4 不属于 A , 即 4 ∉…
P1978 集合 题目描述 集合是数学中的一个概念,用通俗的话来讲就是:一大堆数在一起就构成了集合.集合有如 下的特性: •无序性:任一个集合中,每个元素的地位都是相同的,元素之间是无序的. •互异性:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次. •确定性:给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居 其一,不允许有模棱两可的情况出现. 例如 A = {1, 2, 3} 就是一个集合.我们可以知道, 1 属于 A ,即 1 ∈ A : 4 不属于 A…
P1978 集合 题目描述 集合是数学中的一个概念,用通俗的话来讲就是:一大堆数在一起就构成了集合.集合有如 下的特性: •无序性:任一个集合中,每个元素的地位都是相同的,元素之间是无序的. •互异性:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次. •确定性:给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居 其一,不允许有模棱两可的情况出现. 例如 A = {1, 2, 3} 就是一个集合.我们可以知道, 1 属于 A ,即 1 ∈ A : 4 不属于 A…
题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的: {3} 和 {1,2} 这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的: {1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}…
题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F[i][j]表示对于前i个数,和为j的方案数F[0][0]=1;F[i][j]+=F[i-1][j-i] (j>=i)转化为for(int i=1;i<=N;i++) for(int j=sum/2;j>=i;j--) F[j]+=F[j-i];答案是F[sum/2]/2,因为真实题目要求是…
1. P1327数列排序 题目描述 给定一个数列{an},这个数列满足ai≠aj(i≠j),现在要求你把这个数列从小到大排序,每次允许你交换其中任意一对数,请问最少需要几次交换? 输入输出格式 输入格式: 第一行,正整数n (n<=100,000). 以下若干行,一共n个数,用空格分隔开,表示数列{an},任意-231<ai<231. 输出格式: 只有一行,包含一个数,表示最少的交换次数. 输入输出样例 输入样例#1: 8 8 23 4 16 77 -5 53 100 输出样例#1: 5…
集合 题目链接 显然,我们是要把数据先排序的, 然后从大到小枚举每个数,看是否能选上, 能选就选,不能拉倒 若能,二分查找a[i]/k,若查找成功,ans++ 将a[i]/k标记为不能选择 最后输出答案即可 (从小到大枚举会爆long long) #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> using namespace std; #define N 10…
luogu 因为限制关系只和2和3有关,如果把数中2的因子和3的因子都除掉,那剩下的数不同的数是不会相互影响,所以每次考虑剩下的数一样的一类数,答案为每类数答案的乘积 如果选了一个数,那么2的因子多1的和3的因子多1的数都不能选.假设这个数为\(2^a3^bc\),那就把这个数放在\(i\)行\(j\)列上,现在问题变成这一堆数有多少子集满足没有两个上下或左右相邻元素,那么状压一行的放数状态,一行一行扫过去dp即可 #include<bits/stdc++.h> #define LL long…
扩展欧拉定理:$a^{b} \equiv a^{b Mod \varphi  (p) + \varphi  (p)}  (Mod  p)  $ $(b \geq \varphi (p))$ . 这道题中$\varphi (p)$一定是一个偶数,所以余数为$0$. 这样子的话只需要递归求解就可以了,可以知道一定不会超过$log$层. 时间复杂度$O(maxN + Tlognlogn)$. Code: #include <cstdio> #include <cstring> using…
题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过.... $Code$ #include<cstdio> #include<algorithm> using namespace std; ; int T,p; int phi[lim]; void init_phi() { phi[]=; ;i<=lim;i++) phi[i]…
本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\(b<\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)}(mod\ p)\) \(b\)和\(p\)可以不互质 然后这题就简单了... #include<iostream> #include<cstring> #include<…
题目链接:Click here Solution: 这道题就考你会不会扩展欧拉定理,根据扩展欧拉定理可知 \[ a^b \equiv a^{(b\,mod\,\varphi(p))+\varphi(p)} \,(mod\,p),b>\varphi(p) \] 本题利用扩展欧拉定理,显然可得一个递归式,边界条件是\(\varphi(p)=1\) 线筛预处理\(\varphi(n)\)即可 Code: #include<bits/stdc++.h> #define int long long…
题目传送门:https://www.luogu.org/problem/show?pid=2170 题目描述 老师想从N名学生中选M人当学霸,但有K对人实力相当,如果实力相当的人中,一部分被选上,另一部分没有,同学们就会抗议.所以老师想请你帮他求出他该选多少学霸,才能既不让同学们抗议,又与原来的M尽可能接近 输入输出格式 输入格式: 第一行,三个正整数N,M,K. 第2...K行,每行2个数,表示一对实力相当的人的编号(编号为1-N) 输出格式: 一行,表示既不让同学们抗议,又与原来的M尽可能接…
Luogu 1111 修复公路(最小生成树) Description A地区在地震过后,连接所有村庄的公路都造成了损坏而无法通车.政府派人修复这些公路. 给出A地区的村庄数N,和公路数M,公路是双向的.并告诉你每条公路的连着哪两个村庄,并告诉你什么时候能修完这条公路.问最早什么时候任意两个村庄能够通车,即最早什么时候任意两条村庄都存在至少一条修复完成的道路(可以由多条公路连成一条道路) Input 第1行两个正整数N,M 下面M行,每行3个正整数x, y, t,告诉你这条公路连着x,y两个村庄,…
题目描述 今天天气好晴朗,处处好风光,好风光!蝴蝶儿忙啊,蜜蜂也忙,信息组的同学们更加忙.最近,由于XX原因,大家不得不到岳麓山去提水.55555555~,好累啊. 信息组有一个容量为q升的大缸,由于大家都很自觉,不愿意浪费水,所以每次都会刚好把缸盛满.但是,信息组并没有桶子(或者瓢)来舀水,作为组内的生活委员,你必须肩负重任,到新一佳去买桶子. 新一佳有p种桶子,每种桶子都有无穷多个^_^,且价钱一样.由于大家都很节约,所以你必须尽量少买桶子.如果有多种方案,你必须选择“更小”的那种方案,即:…
期望DP要倒着推 Luogu P4321 题意 LOJ #2542 不一定是树,询问点不一定均为1 $Solution$ 设计一个巧妙的DP状态 设$ F(S,x)$表示当前在点$ x$已经走遍了$ S$,走完剩下所有点的期望步数 这样推转移$ DP$的时候一定是从$ F(S|y,y)$转移过来 容易发现$ S|y$->$S$是不可能会变大的,即这维不可能成环 因此从大到小枚举$ S$,对当前$ S$,显然比$ S$大的状态已经被计算,暴力$ n^3$高斯消元消出这维就好了 时间复杂度$ O(2…
传送门 官方题解(证明都在这) 神仙题鸭qwq 转化模型,发现这题本质就是一个集合,每次可以加上集合里的数,问可以拼出多少不同的数 首先暴力需要膜意义下的最短路,例题戳这 然后这个暴力可以优化成N^2的.具体操作是枚举每个数,然后从某个点只用这个数往后跳,这样在膜m意义下可以形成\(gcd(a,m)\)个环.每个环找到dis最小的点,从这个点开始依次遍历整个环,更新后一个位置 有个结论是集合中的数可以分成\(logn\)个等差数列,所以可以每个等差数列贡献答案 然后对于每个等差数列,先把膜m意义…
Luogu 1525 [NOIP2010]关押罪犯 (贪心,并查集) Description S城现有两座监狱,一共关押着N名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"(一个正整数值)来表示某两名罪犯之间的仇恨程度,怨气值越大,则这两名罪犯之间的积怨越多.如果两名怨气值为c的罪犯被关押在同一监狱,他们俩之间会发生摩擦,并造成影响力为c的冲突事件.每年年末,警察局会将本年内监狱中的所有冲突事件按影响…
一些日常工具集合(C++代码片段) ——工欲善其事,必先利其器 尽管不会松松松,但是至少维持一个比较小的常数还是比较好的 在此之前依然要保证算法的正确性以及代码的可写性 本文依然会持久更新,因为一次写不完 Tools1:算法 这个的重要性就不强调了,轻则多$log$,重则爆$n^2$,更令人窒息者为多项式和非多项式的区别 设计一个好的算法,首先不要想着如何去用$O(n^2)$碾压$O(n)$,而是先想如何实现$O(n)$才是比较好的 洛咕日报15期(霸占评论区三天2333),关于基数排序的 To…
[luogu T71973]卡常者π酱 题意 给定一个长度为 \(n\) 的字符串, 要求将字符串分割为若干段, 每一段要么是一个字符要么是前面几段的并的子串. 如果某一段是一个单独字符, 则产生 \(a\) 的开销. 如果是前几段的并的子串, 则产生 \(b\) 的开销. 如果满足两个条件, 则可以在 \(a,b\) 中任选一个开销. 求划分的最小开销. \(n\le 5\times 10^6\), 字符集大小 \(\Sigma\le 7\). 题解 冷静分析一下发现是沙雕题 然而题目说不卡常…
Libre 6009 「网络流 24 题」软件补丁 / Luogu 2761 软件安装问题 (最短路径,位运算) Description T 公司发现其研制的一个软件中有 n 个错误,随即为该软件发放了一批共 m 个补丁程序.每一个补丁程序都有其特定的适用环境,某个补丁只有在软件中包含某些错误而同时又不包含另一些错误时才可以使用.一个补丁在排除某些错误的同时,往往会加入另一些错误.换句话说,对于每一个补丁 i,都有 2 个与之相应的错误集合 B1[i]和 B2[i],使得仅当软件包含 B1[i]…
Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相交)的集合.如果V中每个顶点恰好在P的一条路上,则称P是G的一个路径覆盖.P中路径可以从V的任何一个顶点开始,长度也是任意的,特别地,可以为0.G的最小路径覆盖是G的所含路径条数最少的路径覆盖. 设计一个有效算法求一个有向无环图G的最小路径覆盖. Input 第1行有2个正整数n和m.n是给定有向无…
Luogu 2762 太空飞行计划 / Libre 6001 「网络流 24 题」太空飞行计划 (网络流,最大流) Description W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,-,Em},和进行这些实验需要使用的全部仪器的集合I={ I1, I2,-,In }.实验Ej 需要用到的仪器是I的子集Rj∈I. 配置仪器Ik 的费用为ck 美元.实验Ej 的赞助商已同意为该实验结果支付pj 美元…
考虑构造矩阵 1 3 9 27...... 2 6 18 54...... 4 12 36 108...... ...... 发现在这个矩阵上一个合法的集合是一个满足选择的数字不相邻的集合,由于行数列数的大小都是log级别的,可以直接状压dp. 此外,不仅要以1位左上角做dp,还要分别以所有既不是2的倍数,也不是3的倍数的数字做dp. 把所有方案乘起来即可. #include<iostream> #include<cctype> #include<cstdio> #in…
题目链接 LOJ:https://loj.ac/problem/2271 洛谷:https://www.luogu.org/problemnew/show/P3784 BZOJ太伤身体死活卡不过还是算了吧... Solution 为啥窝洛谷\(rk4\) \(\rm BZOJ\)死活跑不过啊... 技不如人,肝败吓疯... 题目并不难 设\(a_i\)表示\(i\)有没有出现在集合中,这是我们要求的答案. 那么把背包写成生成函数就是: \[ \prod_{i=1}^{n}\left(\sum_{…
题目链接:https://www.luogu.org/problem/show?pid=1466 题目大意:对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的:{3} 和 {1,2}. 解题思路:01背包问题,设sum是1~n之和,其实就是求用数字1~n凑出sum/2的方案数(每个数字只能用一次),概括为以下几点: ①sum为奇数不能平分,直接…
题目链接:https://www.luogu.org/problemnew/show/P3410 这个题就是求一个最大权闭合图 在一个图中,一些点构成一个集合,且集合中的出边指向的终点也在这个集合中,则我们称这个集合为闭合图. 整个图中点的权值之和最大的闭合图,为最大权闭合图. 最大权闭合图可以用网络流来求 造出一个超级源点S和一个超级汇点T,把S连边到所有带有正权的点上,容量是这个点的权:把所有带负权的点连边到T,容量是这个点的权的相反数.原来的边呢,把它们的容量都设成无限大. (带负权的是员…
题目链接:https://www.luogu.org/problemnew/show/P2024 摘吊打集训队的九日dalao一句话 关于带有多个相对集合的全集,我们可以多开几倍的空间.每一倍的元素表示这个当前里的相对元素 那么这道题,既然只有三种关系,我们就可以搞三个并查集来记录不同的关系. 我们令fa[i]表示自己本身,fa[i+n]表示猎物,fa[i+n+n]表示天敌. 接着就是对这道题的处理: 首先,吐槽一句,这nm什么xjb食物链..明明是个环.. 其次,吐槽两句,这nm为什么无脑相信…
题目链接:https://www.luogu.org/problemnew/show/P1196 题意: 有30000个战舰队列,编号1...30000. 有30000艘战舰,编号1...30000,初始时第i艘战舰在第i个战舰队列中. 然后t个操作: (1)M i j:将战舰i所在的队列整体接到战舰j所在队列的尾部. (2)C i j:询问战舰i,j之间有多少艘战舰.若i,j不在同一队列中,输出-1. 题解: dis[i]表示战舰i与par[i]之间的距离. siz[i]表示战舰i所在队列的大…
题目链接:https://www.luogu.org/problemnew/show/P1783 先把题目改造一下:题目所求是要一条能从0列到n列的路径,使其路径上的最大边长一半最小. 为什么是一半呢? 考虑半径这个东西,假如两个点之间距离为d,半径分别为r1,r2.需满足r1 + r2 >= d 若当前d为所求路径上的最大边长,那么当且仅当r1 = r2 = d/2时有最小的r满足条件,否则若一个r < d/2,另一个就会是r > d/2,取最大的r还是>d/2. 那么剩下的问题…