NFA和DFA的区别】的更多相关文章

  NFA DFA 初始状态 不唯一 唯一 弧上的标记 字(单字符字/ε) 字符(串) 转换关系 非确定 确定 对于每个NFA M都存在一个DFA M' 使得 L(M) = L(M')…
一个数据块的访问时间等于寻道时间.旋转延迟时间和数据传输时间三者之和: NFA和DFA区别: 一个状态如A,遇0可以转换到下一个状态B或C,因为选择多所以不确定,因此为不确定的有限自动机: 一个状态还是A,遇0可以转换到下一个状态B(只有B),因为选择只有一个很确定,因此为确定的有限自动机.…
json的主页上,提供了number类型的符号识别过程,如下: 图片引用:http://www.json.org/json-zh.html 实际上这张图片表示的是一个状态机,只是状态没有标出来.因为这个状态机上存在ε转换,所以它是一个NFA(不确定有限自动机).ε转换也即不需要输入串就能进行的转换,例如从开始状态到0之前的状态.而我们进行识别的时候,使用DFA(确定有穷自动机)会简单方便得多.所以首先应该将这个NFA转成DFA. 首先把这个NFA规范一下,写成状态与箭头的形式:   NFA转DF…
求子串 数据结构中对串的5种最小操作子集:串赋值,串比较,求串长,串连接,求子串,其他操作均可在该子集上实现 数据结构中串的模式匹配 KPM模式匹配算法 基本的模式匹配算法 //求字串subString 在串string中的位置function subString(string, subString){ var i=0,j=0;//当i或j超出范围退出 while(i<string.length&&j<subString.length){ if(string[i]==subSt…
为了加速转换的处理,我压缩了符号表.具体算法参考任何一本与编译或者自动机相关的书籍. 这里的核心问题是处理传递性闭包,transitive closure,这个我目前采取的是最简单的warshall算法,虽然是4次的复杂度,但是由于我构建nfa的时候并没有采取标准的方法,使得nfa的节点减少很多.ps,上上篇所说的re转nfa,我这里有一个修改,就是对于or转换,不再增加节点,而是只增加两条空转换边. 相关代码如下 #include "nfa_process.h" //首先在原来的nf…
概述 NFA非有穷自动机,即当前状态识别某个转换条件后到达的后继状态不唯一,这种自动机不便机械实现,而DFA是确定有限状态的自动机,它的状态转换的条件是确定的,且状态数目往往少于NFA,所以DFA能够比较方便的机械实现且识别能力方面也和NFA相当.本次实验采用子集构造法来实现不带空弧的由NFA到DFA的转换. 子集构造法的算法如下: 设NFA为M=(K,Σ,f,S0,Z),则构造相应的DFA  M′=(Q,Σ,f′,I0,F)①取I0=S0:②对于状态集Q中任一尚未标记的状态qi={Si1,Si…
本文将以两种方法实现NFA转DFA,并利用C语言实现. 方法二已利用HNU OJ系统验证,方法一迷之WA,但思路应该是对的,自试方案,测试均通过. (主要是思路,AC均浮云,大概又有什么奇怪的Case没想到) ========================================================== 下面的描述以机械工业出版社的<计算理论导引>的第三版35页图为例.该NFA如下图. 思路一:穷举组合状态,构造DFA 该思路接近<计算理论>课本35页思路.…
正则表达式匹配,包含两个东西,一个是表达式,一个文本. NFA(Nondeterministic Finite Automaton),不确定有穷自动机,表达式主导,NFA去吃文本,贪婪算法吃下去,如果因为前面吃得太多,导致后面没的吃(后面匹配失败),前面吃的要吐出一点,后面还匹配不成功,前面再吐出一点... DFA(Deterministic Finite Automaton),确定有穷自动机,文本主导,DFA去找吃货,去掉不能吃的吃货,找到最合适的吃货. 举例来说:.*[0-9]+, 去匹配…
#include <iostream> #include <vector> #include <cstring> #include "stack" #include "algorithm" using namespace std; int NFAStatusNum,AlphabetNum,StatusEdgeNum,AcceptStatusNum; char alphabet[1000]; int accept[1000]; in…
本题摘自北邮的编译原理与技术. 首先,根据此图构造状态转换表 表中第一列第一行表示从第一个符号B通过任意个空转换能到达的节点,Ia表示由此行的状态数组({B,5,1}可以看作0状态)经过一个a可以到达的节点,同理,Ib表示由状态数组经过一个b可以到达的节点. 当然,有些人可能觉得{B,5,1}和{5,1,3}看作两个状态不合理,他们之间不是有交集嘛,实际上他们之间并无交集,因为输入a后,{B,5,1}能到达的新节点是3,之所以要写成{5,1,3},可能是要兼顾逻辑吧>_> 再仔细观察第一行,既…
下面图使用NFA表示的状态转换图, 使用子集构造法,有如下过程, ε-closure(0) = {0, 1, 2, 3, 4, 6, 7}初始值,令为AA = {0, 1, 2, 3, 4, 6, 7} 标记A move(A, a) = {3, 8}Dtran[A, a] = {1, 2, 3, 4, 6, 7, 8}不重复,令为BB = {1, 2, 3, 4, 6, 7, 8}转换关系为A->a->B move(A, b) = {5}Dtran[A, b] = {1, 2, 4, 5, 6…
转载请注明出处 https://www.cnblogs.com/majianming/p/11823697.html 目前常见的正则表达引擎总体分为2种,DFA (确定型有穷状态自动机) 和 NFA (非确定型有穷状态自动机) 如果细分,NFA 可以分为传统NFA和POSIX NFA 那么如何区分3者 如果某种正则引擎如果他不能匹配能很快给出结果,那么他可能是DFA 如果只有在能够匹配的时候才能快速给出结果,那么就是传统NFA 如果无论能不能匹配,匹配的时间都基本一致,那么就是POSIX NFA…
在编译原理(第三版清华大学出版社出版)中第三章的词法分析中,3.4.3.5.3.6小节中分别讲解了 1.什么是NFA(不确定的有穷自动机)和DFA(确定的有穷自动机) 2.如何将  不确定的有穷自动机(NFA)  转化为  确定的有穷自动机(DFA); 3.如何化简DFA; 4.正规式和有穷自动机的等价性(根据给出的正规式构造有穷自动机); 5.正规文法和有穷自动机的等价性(根据给出的正规式构建有穷自动机): 个人在开始学习这一章节的时候,课上听得有些迷惑,并且看书也是感觉没有头绪,后来花了一些…
1.问题概述 NFA 和 DFA浅析---要深入了解正则表达式,必须首先理解有穷自动机. 有穷自动机(Finite Automate)是用来模拟实物系统的数学模型,它包括如下五个部分: 有穷状态集States 输入字符集Input symbols 转移函数Transitions 起始状态Start state 接受状态Accepting state(s)(终止状态) 下图为一台有穷自动机…
词法分析器的设计 词法分析器的功能:输入源程序.输出单词符号 词法分析器的设计:给出程序设计语言的单词规范--单词表, 对照单词表设计识别该语言所有单词的状态转换图, 根据状态转换图编写词法分析程序 字母表:一个有穷字符集,记为∑ 字母表中每个元素称为字符 ∑上的字(也叫字符串) 是指由∑中的字符所构成的一个有穷序列 不包含任何字符的序列称为空字,记为ε 用∑*表示∑上的所有字的全体,包含空字ε 例如: 设 ∑={a, b},则,∑*={ε,a,b,aa,ab,ba,bb,aaa,...} ∑…
1.问题概述 随着计算机语言的结构越来越复杂,为了开发优秀的编译器,人们已经渐渐感到将词 法分析独立出来做研究的重要性.不过词法分析器的作用却不限于此.回想一下我们的老师刚刚开始向我们讲述程序设计的时候,总是会出一道题目:给出一个填入 了四则运算式子的字符串,写程序计算该式子的结果.除此之外,我们有时候建立了比较复杂的配置文件,譬如XML的时候,分析器首先也要对该文件进行词法分 析,把整个字符串断成了一个一个比较短小的记号(指的是具有某种属性的字符串),之后才进行结构上的分析.再者,在实现某种控…
等价性 对于每个NFA M存在一个DFA M',使得L(M)=L(M')--------等价性证明,NFA的确定化 假定NFA M=<S, Σ, δ, S 0 , F>,我们对M的状态转换图进行以下改造: 解决初始状态唯一性:引进新的初态结点X和终态结点Y,X,Y∉S,从X到S 0中任意状态结点连一条ε箭弧, 从F中任意状态结点连一条ε箭弧到Y 简化弧上的标记:对M的状态转换图进一步施行替换,其中k是新引入的状态 逐步把这个图转变为每条弧只标记为Σ上的一个字符或ε,最后得到一个NFA M',显…
摘要: 在编译系统中,词法分析阶段是整个编译系统的基础.对于单词的识别,有限自动机FA是一种十分有效的工具.有限自动机由其映射f是否为单值而分为确定的有限自动机DFA和非确定的有限自动机NFA.在非确定的有限自动机NFA中,由于某些状态的转移需从若干个可能的后续状态中进行选择,故一个NFA对符号串的识别就必然是一个试探的过程.这种不确定性给识别过程带来的反复,无疑会影响到FA的工作效率.因此,对于一个非确定的有限自动机NFA M,经常的做法是构造一个确定的有限自动机DFA M’. 有穷自动机(也…
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射:子集法 1)…
1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1}  f(0,b)={0}  f(1,b)={2}  f(2,b)={3} 画出状态转换矩阵,状态转换图,并说明该NFA识别的是什么样的语言. 语言为:(a|b)*abb 2.NFA 确定化为 DFA 1.解决多值映射:子集法 1). 上述练习1的NFA 2). 将下图NFA 确定化为 DFA 2.解决空弧:对初态和所有新状态求ε-闭包 1). 图转换为矩阵: 状态转换图: 识别语言为:0…
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射:子集法 1)…
在编译系统中,词法分析阶段是整个编译系统的基础.对于单词的识别,有限自动机FA是一种十分有效的工具.有限自动机由其映射f是否为单值而分为确定的有限自动机DFA和非确定的有限自动机NFA.在非确定的有限自动机NFA中,由于某些状态的转移需从若干个可能的后续状态中进行选择,故一个NFA对符号串的识别就必然是一个试探的过程.这种不确定性给识别过程带来的反复,无疑会影响到FA的工作效率.因此,对于一个非确定的有限自动机NFA M,经常的做法是构造一个确定的有限自动机DFA M’. 有穷自动机(也称有限自…
一.从NFA到DFA的转换 例如下图: DFA的每个状态都是一个由NFA中的状态构成的集合,即NFA状态集合的一个子集 r =aa*bb*cc* 二.从带有ε-边的NFA到DFA的转换 r=0*1*2* 三.子集构造法( subset construction)  输入:NFA N 输出:接收同样语言的DFA D 方法:一开始,ε-closure ( s0 )是Dstates 中的唯一状态,且它未加标记: while(在Dstates中有一个未标记状态T ) { 给T加上标记: for(每…
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射:子集法 1)…
1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1}  f(0,b)={0}  f(1,b)={2}  f(2,b)={3} 画出状态转换矩阵,状态转换图,并说明该NFA识别的是什么样的语言. 解析:   a b 0 {0,1} 0 1 2 2 3 3   状态转换图如下: 识别语言为:(a | b)*abb 2.NFA 确定化为 DFA 1.解决多值映射:子集法 1). 上述练习1的NFA 解析: 根据1的NFA构造DFA状态转换矩阵如…
 提交作业 NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射…
NFA(不确定的有穷自动机)转化为DFA(确定的有穷自动机) NFA转换DFA,通常是将带空串的NFA(即:ε-NFA)先转化为不带空串的NFA(即:NFA),然后再转化为DFA. 提示:ε是空串的意思!空串没有任何字符! 这里直接讲将ε-NFA转化为DFA的过程,将NFA转化为DFA的情况类似. 转化的过程总的来说有两大步骤:ε-NFA转化为DFA,以及DFA简化 ε-NFA转化为DFA前件知识 1.对状态图进行改造 增加状态X,Y,使之成为新的唯一的初态和终态,从X引ε弧到原初态节点,从原终…
1       为什么要了解引擎匹配原理 一个个音符杂乱无章的组合在一起,弹奏出的或许就是噪音,同样的音符经过作曲家的手,就可以谱出非常动听的乐曲,一个演奏者同样可以照着乐谱奏出动听的乐曲,但他/她或许不知道该如何去改变音符的组合,使得乐曲更动听. 作为正则的使用者也一样,不懂正则引擎原理的情况下,同样可以写出满足需求的正则,但是不知道原理,却很难写出高效且没有隐患的正则.所以对于经常使用正则,或是有兴趣深入学习正则的人,还是有必要了解一下正则引擎的匹配原理的. 2       正则表达式引擎…
  整体的步骤是三步: 一,先把正规式转换为NFA(非确定有穷自动机), 二,在把NFA通过"子集构造法"转化为DFA, 三,在把DFA通过"分割法"进行最小化. 一步很简单,就是反复运用下图的规则,图1 这样就能转换到NFA了. 给出一个例题,来自Google book.本文主要根据这个例题来讲,图2 二.子集构造法. 同样的例题,把转换好的NFA确定化,图3 这个表是从NFA到DFA的时候必须要用到的.第一列第一行I的意思是从NFA的起始节点经过任意个ε所能到达…
NFA引擎匹配原理 1       为什么要了解引擎匹配原理 一个个音符杂乱无章的组合在一起,弹奏出的或许就是噪音,同样的音符经过作曲家的手,就可以谱出非常动听的乐曲,一个演奏者同样可以照着乐谱奏出动听的乐曲,但他/她或许不知道该如何去改变音符的组合,使得乐曲更动听. 作为正则的使用者也一样,不懂正则引擎原理的情况下,同样可以写出满足需求的正则,但是不知道原理,却很难写出高效且没有隐患的正则.所以对于经常使用正则,或是有兴趣深入学习正则的人,还是有必要了解一下正则引擎的匹配原理的. 2     …