ICDAR2015 数据处理及训练】的更多相关文章

训练数据处理: 天池ICPR2018和MSRA_TD500两个数据集: 1)天池ICPR的数据集为网络图像,都是一些淘宝商家上传到淘宝的一些商品介绍图像,其标签方式参考了ICDAR2015的数据标签格式,即一个文本框用4个坐标来表示,即左上.右上.右下.左下四个坐标,共八个值,记作[x1 y1 x2 y2 x3 y3 x4 y4]  2)MSRA_TD500使微软收集的一个文本检测和识别的一个数据集,里面的图像多是街景图,背景比较复杂,但文本位置比较明显,一目了然. 因为MSRA_TD500的标…
本文转自:http://mp.weixin.qq.com/s/Xe3g2OSkE3BpIC2wdt5J-A 谷歌大规模机器学习:模型训练.特征工程和算法选择 (32PPT下载) 2017-01-26 新智元 1新智元编译   来源:ThingsExpo.Medium 作者:Natalia Ponomareva.Gokula Krishnan Santhanam 整理&编译:刘小芹.李静怡.胡祥杰 新智元日前宣布,获6家顶级机构总额达数千万元的PreA轮融资,蓝驰创投领投,红杉资本中国基金.高瓴智…
这几天一直在用Pytorch来复现文本检测领域的CTPN论文,本文章将从数据处理.训练标签生成.神经网络搭建.损失函数设计.训练主过程编写等这几个方面来一步一步复现CTPN.CTPN算法理论可以参考这里. 训练数据处理 我们的训练选择天池ICPR2018和MSRA_TD500两个数据集,天池ICPR的数据集为网络图像,都是一些淘宝商家上传到淘宝的一些商品介绍图像,其标签方式参考了ICDAR2015的数据标签格式,即一个文本框用4个坐标来表示,即左上.右上.右下.左下四个坐标,共八个值,记作[x1…
参考:https://github.com/chenyuntc/pytorch-book/tree/v1.0/chapter6-实战指南 希望大家直接到上面的网址去查看代码,下面是本人的笔记 将上面地址的代码下载到本地后进行操作 1.安装依赖 (deeplearning) userdeMacBook-Pro:dogcat- user$ pip install -r requirements.txt ... Successfully built fire ipdb torchnet Install…
目录 基于keras的中文语音识别 音频文件特征提取 文本数据处理 数据格式处理 构建模型 模型训练及解码 aishell数据转化 该项目github地址 基于keras的中文语音识别 该项目实现了GRU-CTC中文语音识别,所有代码都在gru_ctc_am.py中,包括: 音频文件特征提取 文本数据处理 数据格式处理 构建模型 模型训练及解码 之外还包括将aishell数据处理为thchs30数据格式,合并数据进行训练.代码及数据放在gen_aishell_data中. 默认数据集为thchs…
kaggle竞赛分享:NFL大数据碗 - 上 竞赛简介 一年一度的NFL大数据碗,今年的预测目标是通过两队球员的静态数据,预测该次进攻推进的码数,并转换为该概率分布: 竞赛链接 https://www.kaggle.com/c/nfl-big-data-bowl-2020 项目链接,该项目代码已经public,大家可以copy下来直接运行 https://www.kaggle.com/holoong9291/nfl-big-data-bowl github仓库链接,更多做的过程中的一些思考.问题…
Pytorch学习系列(一)至(四)均摘自<深度学习框架PyTorch入门与实践>陈云 目录: 1.程序的主要功能 2.文件组织架构 3. 关于`__init__.py` 4.数据处理 5.模型定义 6.工具函数 7.配置文件 8.main.py 9.使用 1.程序的主要功能: 模型定义    数据加载    训练和测试 2.文件组织架构: ```├── checkpoints/├── data/│   ├── __init__.py│   ├── dataset.py│   └── get_…
MindSpore技术理解(上) 引言 深度学习研究和应用在近几十年得到了爆炸式的发展,掀起了人工智能的第三次浪潮,并且在图像识别.语音识别与合成.无人驾驶.机器视觉等方面取得了巨大的成功.这也对算法的应用以及依赖的框架有了更高级的要求.深度学习框架的不断发展使得在大型数据集上训练神经网络模型时,可以方便地使用大量的计算资源. 深度学习是使用多层结构,从原始数据中自动学习并提取高层次特征的一类机器学习算法.通常,从原始数据中提取高层次.抽象的特征是非常困难的.目前有两种主流的深度学习框架:一种是…
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 通过TensorFlow提供的tf.train.batch和tf.train.shuffle_batch函数来将单个的样例组织成batch的形式输出. #!/usr/bin/env python # -*- coding: UTF-8 -*- # coding=utf-8 """ @author: Li Tian @contact: 694317828@qq.com @software: p…
环境:Windows 最近用Caffe跑了一下AlxNet网络,现在总结一下数据处理部分:(处理过的数据打包链接:http://pan.baidu.com/s/1sl8M5ad   密码:ph1y) (1)获得数据集,途径有: 1.Benchmark(数据库)  AFLW   FDDB 2.最新论文(2016) 3.Thinkface论坛 数据量:庞大的数据量支撑,最少1w张(正,负样本各一万张),格式如下: xxxx.jpg x1,y1,x2,y2(标注label),即人脸所在矩形框的坐标 x…
现在有这样的一个场景:给一张行人的小矩形框图片, 根据该行人的特征识别出性别. 分析: (1),行人的姿态各异,变化多端.很难提取图像的特定特征 (2),正常人肉眼判别行人的根据是身材比例,头发长度等.(如果是冬天的情况下,行人穿着厚实,性别识别更加难) solution: 针对难以提取特定特征的图像,可以采用卷积神经网络CNN去自动提取并训练. 数据准备:  采用 PETA数据集,Pedestrain Attribute Recognition At Far Distance. 该数据集一共包…
Lukas Neuman--[ICDAR2015]Efficient Scene Text Localization and Recognition with Local Character Refinement 算法介绍 Fig. 2. Overview of the method. Initial text hypotheses efficiently generatedby a MSER detector are further refined using a local text mod…
Android架构设计和软硬整合完整训练 Android架构设计和软硬整合完整训练:HAL&Framework&Native Service&Android Service&Best Practice 如何理解Android架构设计的初心并开发出搭载Android系统并且具备深度定制和软硬整合能力特色产品,是本课程解决的问题. 课程以Android的五大核心:HAL.Binder.Native Service.Android Service(并以AMS和WMS为例).Vie…
数据处理:12个使得效率倍增的pandas技巧 1. 背景描述 Python正迅速成为数据科学家偏爱的语言,这合情合理.它拥有作为一种编程语言广阔的生态环境以及众多优秀的科学计算库.如果你刚开始学习Python,可以先了解一下Python的学习路线. python学习路线:https://www.analyticsvidhya.com/learning-paths-data-science-business-analytics-business-intelligence-big-data/lea…
原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accuracy 问题处理之前要知道的事: 数据科学框架(A Data Science Framework) 1.定义问题(Define the Problem): 问题→需求→方法→设计→技术,这是刚开始拿到问题的解决流程,所以在我们用一些fancy的技巧和算法解决问题之前,必须要明确我们需要解决的问题到…
摘要 BLSTM解码时,解码器需要等待整个音频到达后才开始解码,因为时间反方向的前向传播需要末尾的历史信息.BLSTM这一延时问题使其不适用与实时语音识别.context-sensitive-chunk BLSTM(CSC-LSTM)和latency-controlled BLSTM(LC-BLSTM,延时控制-双向LSTM)都将整句切分为数个chunks.通过在每个chunk中添加左右上下文帧,并以chunk为单位进行前向计算,BLSTM的延迟可以控制为一个chunk左右的时长,并且与传统BL…
一.背景 kaggle上有这样一个题目,关于盐份预测的语义分割题目.TGS Salt Identification Challenge | Kaggle  https://www.kaggle.com/c/tgs-salt-identification-challenge 二.过程 1.下载数据,https://www.kaggle.com/c/tgs-salt-identification-challenge/data 数据说明: train.csv id rle_mask 4000项,即有4…
jupyter notebook: https://github.com/Penn000/NN/blob/master/notebook/LeNet/LeNet.ipynb LeNet训练MNIST import warnings warnings.filterwarnings('ignore') # 不打印 warning import tensorflow as tf import numpy as np import os 加载MNIST数据集 分别加载MNIST训练集.测试集.验证集 f…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
关于word2vec的原理知识参考文章https://www.cnblogs.com/Micang/p/10235783.html 语料数据来自搜狐新闻2012年6月—7月期间国内,国际,体育,社会,娱乐等18个频道的新闻数据 数据处理参考这篇文章 模型训练: # -*- coding: utf-8-*- from gensim.models.word2vec import Word2Vec sentences = [['A1','A2'],['A1','A3','A2']] num=0 wit…
Apache Beam(原名Google DataFlow)是Google在2016年2月份贡献给Apache基金会的Apache孵化项目,被认为是继MapReduce,GFS和BigQuery等之后,Google在大数据处理领域对开源社区的又一个非常大的贡献.Apache Beam的主要目标是统一批处理和流处理的编程范式,为无限,乱序,web-scale的数据集处理提供简单灵活,功能丰富以及表达能力十分强大的SDK.Apache Beam项目重点在于数据处理的编程范式和接口定义,并不涉及具体执…
作业格式 课程名称:软件工程1916|W(福州大学) 作业要求:团队作业第六次-团队Github实战训练 团队名称:葫芦娃队 作业目标:确定和分析选题,绘制评审表 github地址:https://github.com/Baka469/live-project 队员学号 队员昵称 博客地址 041602421 der himmel https://www.cnblogs.com/wenghaoo 221600225 wuliaoBoring https://www.cnblogs.com/wul…
1. Tensorflow高效流水线Pipeline 2. Tensorflow的数据处理中的Dataset和Iterator 3. Tensorflow生成TFRecord 4. Tensorflow的Estimator实践原理 1. 前言 我们在训练模型的时候,必须经过的第一个步骤是数据处理.在机器学习领域有一个说法,数据处理的好坏直接影响了模型结果的好坏.数据处理是至关重要的一步. 我们今天关注数据处理的另一个问题:假设我们做深度学习,数据的量随随便便就到GB的级别,那数据处理的速度对于模…
视频信息 和我之前的臆想不同,视频数据不仅仅是一帧一帧的图片本身,还包含个帧之间的联系,也就是还有一个时序的信息维度,包含人的动作判断之类的任务都是要依赖动作的时序信息的 视频数据处理的两种基本方法 - 使用3D卷积网络引入时间维度:由于3D卷积网络每次的输入帧是有长度限定的,所以这种方法更倾向于关注局部(时域)信息的任务 - 使用RNN/LSTM网络系列处理时序信息:由于迭代网络的特性,它更擅长处理全局视频信息 发散:结合两种方法的新思路 上面的具体实现也未必需要3D卷积,毕竟递归网络自己已经…
目录: 一.TFRecord输入数据格式 1.1 TFrecord格式介绍 1.2 TFRecord样例程序 二.图像数据处理 2.1TensorFlow图像处理函数 2.2图像预处理完整样例 三.多线程数据输入处理框架 3.1 队列与多线程 3.2输入文件队列 3.3组合训练数据(batching) 3.4输入数据处理框架  一.TFRecord输入数据格式 TensorFlow提供了一种统一的格式来存储数据,这个格式就是TFRecord 1.1 TFrecord格式介绍 TFRecord文件…
if __name__=="__main__": '''============================先导入数据==================================''' file_train = 'F:/goverment/exceloperating/all_tocai_train.csv' file_test = 'F:/goverment/exceloperating/all_tocai_test.csv' importSmallContentdata…
目录 aishell数据转换格式 aishell数据转化方法 aishell数据格式对于用神经网络处理数据的同学来说比较不友善,因为他只有文字转录和音素级别的转录,并没有拼音的转录. 而thchs30由于有拼音标注的优势被很多同学用来训练神经网络声学模型,因此想通过一些简单的处理,将aishell也转化为方便易用的格式. aishell数据转换格式 废话不多说,转化后数据格式和thchs相同,如下: thchs30 train.syllable.txt: A11_0 lv4 shi4 yang2…
在机器学习中,选择合适的算法固然重要,但是数据的处理也同样重要.通过对数据的处理,能提高计算效率,提高预测识别精确度等等 以下记录下一些数据处理的方法 一.处理缺失值 对于数据集中有缺失值的,粗暴的方法是直接删除该行或者该列的数据,但是这样不可取.可以通过计算每一列或者每一行的平均值来替代该值. from sklearn.preprocessing import Imputer import pandas as pd df = pd.read_csv(data_dir) imr = Impute…
使用python进行数据处理的实例(数据为某公司HR部门关于员工信息的部分摘录,kaggle上面的一次赛题) https://www.kaggle.com/c/kfru-dbm-hr-analytics 该实例是根据其他所给属性预测员工是否会离职,代码实现如下所示 import pandas as pd from sklearn.preprocessing import MinMaxScaler,StandardScaler from sklearn.preprocessing import L…
现在一直在用TensorFlow训练CNN和LSTM神经网络,但是训练期间遇到了好多坑,现就遇到的各种坑做一下总结 1.问题一;训练CNN的时候出现nan CNN是我最开始接触的网络,我的研究课题就是利用CNN,LSTM等网络对人体动作做识别.动作数据来源于手机的加速度计,做动作的人在固定位置携带手机并做特定动作,实验人员接收手机的加速度计数值并打上特定的动作标签. 在训练CNN网络时一共遇到两处坑,一是遇到在训练期间遇到nan错误,这个错误很常见.nan的错误多源于你的学习率设置的太大或者ba…