代码: keras:https://github.com/phdowling/abcnn-keras tf:https://github.com/galsang/ABCNN 本文是Wenpeng Yin 该作者之前还发过一篇<Convolutional Neural Network Architectures for Matching Natural Language Sentences> .ABCNN是基于之前发的这篇论文加入了注意力机制. 相比这两篇Attention-based的论文,会…
目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 单头GAPLayer 多头机制 3.2注意力池化层 3.3 GAPNet架构 四.实验 4.1分类 数据集 网络结构 训练细节 结果 消融研究 4.2 语义部件分割 数据集 模型结构 训练细节 结果 五.结论 GAPNet: Graph Attention based Point Neural Ne…
文章链接:   http://pan.baidu.com/s/1bQBJMQ  密码:4772 作者在这里提出了基于神经网络的Cascade方法,Cascade最早可追溯到Haar Feature提取时用到的Adaboost算法(参考这个博客:http://blog.csdn.net/zouxy09/article/details/7922923),作者在这里将它和神经网络结合到了一起,可谓创新. 关键字:Cascade:Calibration; 为了提高图片的测试速度,作者在这里使用了Casc…
A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK 文章地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8127792 写在前面:各位朋友好,这是本人第一篇博客,为了不打击自己,决定从一篇易懂的paper的阅读笔记开始写起,写的不好不对的地方望各位朋友不吝赐教,在此先行谢过. 1.文章简介: 这是一篇运用卷积神经网…
1. 文章内容概述 本人精读了事件抽取领域的经典论文<Event Extraction via Dynamic Multi-Pooling Convolutional Neural Network>,并作出我的读书报告.这篇论文由中科院自动化所赵军.刘康等人发表于ACL2015会议,提出了用CNN模型解决事件抽取任务. 在深度学习没有盛行之前,解决事件抽取任务的传统方法,依赖于较为精细的特征设计已经一系列复杂的NLP工具,并且泛化能力较低.针对此类问题,这篇论文提出了一个新颖的事件抽取方法,能…
Kalchbrenner’s Paper Kal的这篇文章引用次数较高,他提出了一种名为DCNN(Dynamic Convolutional Neural Network)的网络模型,在上一篇(Kim’s Paper)中的实验结果部分也验证了这种模型的有效性.这个模型的精妙之处在于Pooling的方式,使用了一种称为动态Pooling的方法. 下图是这个模型对句子语义建模的过程,可以看到底层通过组合邻近的词语信息,逐步向上传递,上层则又组合新的Phrase信息,从而使得句子中即使相离较远的词语也…
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 作者补充信息 参考文献 作者和相关链接 论文下载 作者: tong he, 黄伟林,乔宇,姚剑 方法概括 使用改进版的MSER(CE-MSERs,contrast-enhancement)提取候选字符区域: 使用新的CN…
全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网络结构来有效地减少神经网络中参数的数目.而卷积神经网络(Convolutional Neural Network,CNN)可以做到. 1. 卷积神经网络构成 图 1:卷积神经网络 输入层 整个网络的输入,一般代表了一张图片的像素矩阵.图 1中最左侧三维矩阵代表一张输入的图片,三维矩阵的长.宽代表了图…
Convolutional Neural Network Overview A Convolutional Neural Network (CNN) is comprised of one or more convolutional layers (often with a subsampling step) and then followed by one or more fully connected layers as in a standard multilayer neural net…
作者:wuliytTaotao 出处:https://www.cnblogs.com/wuliytTaotao/ 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接.         原文地址: https://www.cnblogs.com/wuliytTaotao/p/9488045.html     -------------------------------------------…