首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
51NOD 1081 子段求和
】的更多相关文章
51NOD 1081 子段求和
1081 子段求和 给出一个长度为N的数组,进行Q次查询,查询从第i个元素开始长度为l的子段所有元素之和. 例如,1 3 7 9 -1,查询第2个元素开始长度为3的子段和,1 {3 7 9} -1.3 + 7 + 9 = 19,输出19. Input 第1行:一个数N,N为数组的长度(2 <= N <= 50000). 第2 至 N + 1行:数组的N个元素.(-10^9 <= N[i] <= 10^9) 第N + 2行:1个数Q,Q为查询的数量. 第N + 3 至 N +…
51nod 1081 子段求和(线段树 | 树状数组 | 前缀和)
题目链接:子段求和 题意:n个数字序列,m次询问,每次询问从第p个开始L长度序列的子段和为多少. 题解:线段树区间求和 | 树状数组区间求和 线段树: #include <cstdio> #define LC(a) ((a<<1)) #define RC(a) ((a<<1)+1) #define MID(a,b) ((a+b)>>1) using namespace std; typedef long long ll; ; ll ans=; struct…
(前缀和 内存分配)51NOD 1081 子段求和
给出一个长度为N的数组,进行Q次查询,查询从第i个元素开始长度为l的子段所有元素之和. 例如,1 3 7 9 -1,查询第2个元素开始长度为3的子段和,1 {3 7 9} -1.3 + 7 + 9 = 19,输出19. Input 第1行:一个数N,N为数组的长度(2 <= N <= 50000). 第2 至 N + 1行:数组的N个元素.(-10^9 <= N[i] <= 10^9) 第N + 2行:1个数Q,Q为查询的数量. 第N + 3 至 N + Q + 2行:每行2个…
【51NOD-0】1081 子段求和
[算法]树状数组(区间和) [题解]记得开long long #include<cstdio> #include<cstring> #include<algorithm> #define lowbit(x) (x&(-x)) using namespace std; ; int n,m; long long a[maxn]; void give(int x,int k) { for(int i=x;i<=n;i+=lowbit(i)) { a[i]+=1l…
51Nod 1081:子段求和(前缀和)
1081 子段求和 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出一个长度为N的数组,进行Q次查询,查询从第i个元素开始长度为l的子段所有元素之和. 例如,1 3 7 9 -1,查询第2个元素开始长度为3的子段和,1 {3 7 9} -1.3 + 7 + 9 = 19,输出19. Input 第1行:一个数N,N为数组的长度(2 <= N <= 50000). 第2 至 N + 1行:数组的N个元素.(-10^9 <= N[i] &l…
51nod 1258 序列求和 V4
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258 1258 序列求和 V4 基准时间限制:8 秒 空间限制:131072 KB 分值: 1280 难度:9级算法题 收藏 关注 T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n). 例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55. 由于结…
51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50000\) 等幂求和 多项式求逆元\(O(mlogm)\)预处理伯努利数,然后可以\(O(m)\)回答 因为是任意模数,所以要用拆系数fft 拆系数fft+多项式求逆元,写的爽死了 具体内容可能会写学习笔记 注意: 多项式求逆元里拆系数,不能只更新 .x= ,这样的话y还保留以前的值就错了 因为使用…
51Nod 1680 区间求和 树状数组
题意: 给出一个长度为\(n\)的数列\(A_i\),定义\(f(k)\)为所有长度大于等于\(k\)的子区间中前\(k\)大数之和的和. 求\(\sum_{k=1}^{n}f(k) \; mod \; 10^9+7\). 分析: 从某个长度为\(k\)的子区间对答案的贡献来看: 它的长度大于等于\(k\),所以区间中每个都加到答案中一次. 它的长度还大于等于\(k-1\),区间中前\(k-1\)大的数加到答案中一次. -- 以此类推. 对于每个数\(A_i\):如果这个区间中有\(x\)个小于…
51nod1081 子段求和
给出一个长度为N的数组,进行Q次查询,查询从第i个元素开始长度为l的子段所有元素之和. 例如,1 3 7 9 -1,查询第2个元素开始长度为3的子段和,1 {3 7 9} -1.3 + 7 + 9 = 19,输出19. Input 第1行:一个数N,N为数组的长度(2 <= N <= 50000). 第2 至 N + 1行:数组的N个元素.(-10^9 <= N[i] <= 10^9) 第N + 2行:1个数Q,Q为查询的数量. 第N + 3 至 N + Q + 2行:每行2个数,…
51nod 1228 序列求和(伯努利数)
1228 序列求和 题目来源: HackerRank 基准时间限制:3 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 收藏 关注 T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n). 例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55. 由于结果很大,输出S(n) Mod 1000000007的结果即可. Input 第1行:一个数T,表示后面用作输入测…