Spark RDD 核心总结】的更多相关文章

摘要: 1.RDD的五大属性 1.1 partitions(分区) 1.2 partitioner(分区方法) 1.3 dependencies(依赖关系) 1.4 compute(获取分区迭代列表) 1.5 preferedLocations(优先分配节点列表) 2.RDD实现类举例 2.1 MapPartitionsRDD 2.2 ShuffledRDD 2.3 ReliableCheckpointRDD 3.RDD可以嵌套吗? 内容: 1.RDD的五大属性 1.1partitions(分区…
Spark的核心RDD (Resilient Distributed Datasets弹性分布式数据集)  原文链接:http://www.cnblogs.com/yjd_hycf_space/p/7681585.html 铺垫 在hadoop中一个独立的计算,例如在一个迭代过程中,除可复制的文件系统(HDFS)外没有提供其他存储的概念,这就导致在网络上进行数据复制而增加了大量的消耗,而对于两个的MapReduce作业之间数据共享只有一个办法,就是将其写到一个稳定的外部存储系统,如分布式文件系统…
一句话说,在Spark中对数据的操作其实就是对RDD的操作,而对RDD的操作不外乎创建.转换.调用求值. 什么是RDD RDD(Resilient Distributed Dataset),弹性分布式数据集. 它定义了如何在集群的每个节点上操作数据的一系列命令,而不是指真实的数据,Spark通过RDD可以对每个节点的多个分区进行并行的数据操作. 之所以称弹性,是因为其有高容错性.默认情况下,Spark会在每一次行动操作后进行RDD重计算,如想在多个行动操作中使用RDD,可以将其缓存(以分区的方式…
1. RDD是什么RDD:Spark的核心概念是RDD (resilient distributed dataset),指的是一个只读的,可分区的弹性分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间可重复使用. 2. 为什么会产生RDD? (1)传统的MapReduce虽然具有自动容错.平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算式中要进行大量的磁盘IO操作.RDD正是解决这一缺点的抽象方法. (2)RDD是一种有容错机制的特殊集合,可以分…
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析>一书第一章的内容请看链接<第1章 环境准备> 本文主要展示本书的第2章内容: Spark设计理念与基本架构 “若夫乘天地之正,而御六气之辩,以游无穷者,彼且恶乎待哉?” ——<庄子·逍遥游> n  本章导读: 上一章,介绍了Spark环境的搭建,为方便读者学习Spark做好准备.本章…
org.apache.spark.rddRDDabstract class RDD[T] extends Serializable with Logging A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable, partitioned collection of elements that can be operated on in parallel. Thi…
 RDD的检查点 首先,要清楚.为什么spark要引入检查点机制?引入RDD的检查点?  答:如果缓存丢失了,则需要重新计算.如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容忽视的.为了避免缓存丢失重新计算带来的开销,Spark又引入检查点机制. RDD的缓存能够在第一次计算完成后,将计算结果保存到内存.本地文件系统或者Tachyon(分布式内存文件系统)中.通过缓存,Spark避免了RDD上的重复计算,能够极大地提升计算速度.但是,如果缓存丢失了,则需要重新计算.如果…
   RDD是什么? 通俗地理解,RDD可以被抽象地理解为一个大的数组(Array),但是这个数组是分布在集群上的.详细见  Spark的数据存储 Spark的核心数据模型是RDD,但RDD是个抽象类,具体由各子类实现,如MappedRDD. ShuffledRDD等子类. Spark将常用的大数据操作都转化成为RDD的子类.  官方对RDD的解释是:弹性分布式数据集,全称是Resilient Distributed Datasets.RDD是只读的.分区记录的集合.RDD只能基于在稳定物理存储…
参考资料: Spark和RDD模型研究:http://itindex.net/detail/51871-spark-rdd-模型 理解Spark的核心RDD:http://www.infoq.com/cn/articles/spark-core-rdd/ Spark RDD详解:http://f.dataguru.cn/thread-475874-1-1.html http://developer.51cto.com/art/201309/410276_1.htm…
Spark的算子的作用 首先,关于spark算子的分类,详细见 http://www.cnblogs.com/zlslch/p/5723857.html 1.Transformation 变换/转换算子 1.map算子 2.flatMap算子 3.mapPartitions算子 4.union算子 5.cartesian算子 6.grouBy算子 7.filter算子 8.sample算子 9.cache算子 10.persist算子 11.mapValues算子 12.combineByKey…