[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=57148470 Descrition 首先很明显是期望dp.但是如何进行转移呢? 对于dp,什么样的状态容易储存呢?怎样又分解成相应的子问题呢?于是发现,对于这个问题,我们需要知道猫的位置到老鼠位置的期望值.与这样的相似的状态有很多.观察数据范围,是可以用二维数组存下的.所以我们用f[i][j]表示猫在i点,老鼠在j点的答案. 转移方程: f[i][j]=…
链接:https://ac.nowcoder.com/acm/contest/984/F 来源:牛客网 随机数 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K 64bit IO Format: %lld 题目描述 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁先挤奶的顺序.她们甚至也不能通过仍硬币的方式. 所以她们通过"round number"竞赛的方式.第一头牛选取一个整数,小于20亿.…
1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1640  Solved: 962 Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路. 所有的路都是无向的,即…
1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2335  Solved: 1373[Submit][Status][Discuss] Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点…
[题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先因为聪聪的步数大于可可,所以不可能出现循环,因此是DAG上的期望DP,用记忆化搜索解决. 每个点bfs预处理p[x][y]表示x走向y的第一步位置,设f[x][y]表示聪聪在x可可在y追上的期望时间. $$f(x,y)=\sum_{z}\frac{f(g[g[i][j]]][j],z)}{out[x]+1…
期望dp水题~ 你发现每一次肯定是贪心走 2 步,(只走一步的话就可能出现环) 然后令 $f[i][j]$ 表示聪在 $i$,可在 $j$,且聪先手两个人碰上面的期望最小次数. 用记忆化搜索转移就行了. code: #include <queue> #include <cstdio> #include <vector> #include <cstring> #include <algorithm> #define N 1004 #define L…
1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1635  Solved: 958[Submit][Status][Discuss] Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点A…
题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路. 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A. 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连. 输出 输出1个实数,四舍五入保留三位小数,表示平均多少个时间单…
题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路. 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A. 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连. 输出 输出1个实数,四舍五入保留三位小数,表示平均多少个时间单…
题目 输入格式 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路. 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A. 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连. 输出格式 输出1个实数,四舍五入保留三位小数,表示平均多少个时…
LINK:聪聪与可可 这道题的核心是 想到如何统计答案. 如果设f[i][j]表示第i个时刻... 可以发现还需要统计位置信息 以及上一次到底被抓到没有的东西 不太好做. 两者的位置都在变化 所以需要设出状态 f[i][j]表示第聪聪在i位置 可可在j位置的期望步数. 容易想到转移. i==j->0 j是i的下一步或者下下一步 期望为1. 由于聪聪的走位是固定的 所以 设其走两步的位置为 w 而可可是随机的 所以只需要枚举一下可可的转移即可. 由于状态的无序转移性 所以需要记忆化搜索.非常有趣.…
题目链接:BZOJ - 1048 题目分析 感觉这种分割矩阵之类的题目很多都是这样子的. 方差中用到的平均数是可以直接算出来的,然后记忆化搜索 Solve(x, xx, y, yy, k) 表示横坐标范围 [x, xx], 纵坐标范围 [y, yy] 的矩阵切成 k 块的最小 sigma((Vi - Ave)^2) . 然后再递归将矩阵分得更小,直到 k 为 1 的时候直接返回相应的值. 代码 #include <iostream> #include <cstdlib> #incl…
题目链接:BZOJ - 1055 题目分析 这种类似区间 DP 的记忆化搜索都是很相近的,比如字符串压缩和字符串扩展都差不多. 都是将现在 Solve 的区间分成子区间,再求解子区间. 这道题 Solve(l, r, x) 求能否将 [l, r] 的区间还原成 x ,那么就将它分成两段,看是否能左段变成 p , 右段变成 q. (x 能变成 pq) 代码 #include <iostream> #include <cstdio> #include <cstdlib> #…
题目链接:BZOJ - 1068 题目分析 这种记忆化搜索(区间 DP) 之前就做过类似的,也是字符串压缩问题,不过这道题稍微复杂一些. 需要注意如果某一段是 S1S1 重复,那么可以变成 M + Solve(S1) + R ,不过这个 Solve(S1) 中不能在中间有 M ,否则后面的 R 向前找到的 M 就不再是开头的 M 了. 代码 #include <iostream> #include <cstdio> #include <cstring> #include…
题意:给定一个整数 n ,然后你要把它变成 1,变换操作就是随机从小于等于 n 的素数中选一个p,如果这个数是 n 的约数,那么就可以变成 n/p,否则还是本身,问你把它变成 1 的数学期望是多少. 析:一个很明显的期望DP,dp[i] 表示把 i 变成 1 的期望是多少,枚举每一种操作,列出表达式,dp[i] = ∑dp[i/x]/q + p/q*dp[i] + 1,其中 x 表示枚举的素数,然后 p 表示不是 i 的约数个数,q 是小于等于 n 的素数个数,然后变形,可以得到 dp[i] =…
[题目链接] [CH3803] 扑克牌 [题面描述] \(54\)张牌,每次随机摸一张,求得到 A张黑桃 B张红桃 C张梅花 D张方块 的期望步数.特别地,大王和小王可以当做任意一种花色,当然,会选择当前的最优策略. 设\(f[a][b][c][d][p][q]\)代表已选了\(a,b,c,d,\)王的情况为\(p,q\)时到达目标的期望步数.设最终状态步数为\(0\),则\(f[0][0][0][0]\)即为所求. 这是因为初始情况只有一个,而最终情况有很多种. 所以这道题用到 记忆化搜索 算…
题目大意:给一个正整数N,每次可以在不超过N的素数中随机选择一个P,如果P是N的约数,则把N变成N/p,否则N不变,问平均情况下需要多少次随机选择,才能把N变成1? 分析:根据数学期望的线性和全期望公式可以为每个状态列出一个方程,例如: f(x)=1+f(6)*1/3+f(3)*1/3+f(2)*1/3 等式右边的最前面的“1”是指第一次转移,而后面的几项是后续的转移,用全期望公式展开,一般地,设不超过x的素数有p个,其中有g个是x的因子,则 f(x)=1+f(x)*(1-g/p)+Σf(x/y…
转自PoPoQQQ大佬博客 题目大意:给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜 直接想很难搞,我们不妨来考虑一个特殊情况 假设每堆石子的数量都>1 那么我们定义操作数b为当前石子总数+当前堆数-1 若b为奇数,则先手必胜,否则后手必胜 证明: 若当前只有一堆,则正确性显然 否则: 若b为奇数,那么先手只需进行一次合成操作,此时操作数会-1,且仍不存在大小为1的堆 因此只需要证明b为偶数时先手必败即可 若先手选择了合成操作,那么操作数-1且不存…
用最短路暴力搞出s(i, j)表示聪聪在i, 可可在j处时聪聪会走的路线. 然后就可以dp了, dp(i, j) = [ dp(s(s(i,j), j), j) + Σdp(s(s(i,j), j), to) ] / (degree[i]+1) 边(j, to)存在. 复杂度应该差不多是O(NM) ------------------------------------------------------------------------------- #include<cstdio> #i…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1415 乍一看和“游走”一样.于是高斯消元.n^2状态,复杂度n^6…… 看看TJ,发现因为聪聪不是随便走的,所以聪聪一直逼近可可.故其实无环.可以记搜. (1A还是不错的) #include<iostream> #include<cstdio> #include<cstring> #include<queue> using namespace std;…
题目大意:给你一个无向联通图,节点数n<=1000.聪聪有一个机器人从C点出发向在M点的可可移动,去追赶并吃掉可可,在单位时间内,机器人会先朝离可可最近的节点移动1步,如果移动一步机器人并不能吃掉可可,那机器人会再向可可的方向移动一格,如果有两个节点到可可的距离相等,那机器人会移动到编号较小的一个节点.然后可可会等可能性移动到与它的任意一个相连的节点或者原地不动(即使她明知道移动到某个节点会被吃掉).即1/(outc[x]+1),outc为出度.求可可被吃掉时机器人走的期望时间 概率DP记忆化+…
传送门 题意:小兔子乖乖~~~ 题意·真:无向图吗,聪抓可,每个时间聪先走可后走,聪一次可以走两步,朝着里可最近且点编号最小的方向:可一次只一步,等概率走向相邻的点或不走 求聪抓住可的期望时间 和游走很像,只不过这道题限制了一个人走的方向,两人间的距离具有了阶段性!可以直接$DP$ 求期望一般倒推 $f[i][j]$表示聪在$i$可在$j$抓住的期望时间 $bfs$预处理$g[i][j]$表示聪在$i$可在$j$下一步聪走到哪里 这样聪的行动就知道了,转移枚举可的行动就行啦 边界:$f[i][i…
Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路. 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A. 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连. Output 输出1个实数,四舍五入保留三…
题目链接:https://vjudge.net/problem/HYSBZ-1415 1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2101  Solved: 1228[Submit][Status][Discuss] Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可…
简单题,结果因为理解错题意懵逼了好久…… moveTo[x][y]表示聪聪在节点x,可可在节点y时,聪聪下一步应到达哪一个节点 dp[x][y]表示聪聪在节点x,可可在节点y,且轮到可可行动时,所需时间的数学期望(可可第一次行动不计入其内) #include <cstdio> #include <cstring> #include <algorithm> #include <vector> #include <queue> typedef std…
题意:给出n个点m条边的无向图,两个主角聪聪和可可开始分别在S点和T点.聪聪想吃掉可可,每次由匆匆先行动后来可可行动.聪聪的行动是选他到可可的最短路上的点走最多两步(如果最短路有几条就选编号最小的走),可可的行动是等概率选择一个出点或者不动.问聪聪吃掉可可的期望行动次数. 解法:这道题还是蛮有意思的. 首先我们必须得先注意到聪聪得行动是“智能”的不随机,这样我们不能计算的时候再考虑,我们必须得先预处理nxt[x][y]代表若聪聪在x点可可在y点下一步聪聪会走那个点(根据定义就是x到y最短路的编号…
题目大意:太长了,略 bzoj luogu 并没有想到三进制状压 题解: 3进制状压陷阱的状态,0表示这种陷阱的状态未知,1已知危险,2已知不危险 然后预处理出在当前状态下,每种陷阱有害的概率,设为$g[s][i]$ 已知是危险的,有害概率为1 已知是不危险的,有害概率为0 未知的部分用概率表格里符合当前状态的部分,才是正确的(比如第4个样例输出了0.857就是没用这种方法去求概率) 定义$f[x][y][s][h]$表示当前在(x,y),陷阱的状态为s,当前血量是h 然后记忆化爆搜即可 ...…
感觉是很经典的题 记忆化时因为不好直接通过E判断某个状态是否已经求过,所以再加一个vis打标记即可 /*E[S][u]表示从u出发当前状态是S的期望*/ #include<bits/stdc++.h> using namespace std; #define N 16 #define INF 0x3f3f3f3f int mp[N][N],n,m; <<N]; <<N]; bool dfs(int S,int root){//在状态S下,从root点出发 <<…
因为边权为1所以a直接bfs瞎搞就行--我一开始竟然写了个spfa #include<iostream> #include<cstdio> #include<queue> #include<cstring> using namespace std; const int N=1005,inf=1e9; int n,m,st,ed,h[N],cnt,a[N][N],b[N][N],dis[N][N],d[N]; double f[N][N]; bool v[N]…
传送门 解题思路 还是比较简答的一道题.首先\(bfs\)把每个点到其他点的最短路求出来,然后再记忆化搜索.记搜的时候猫的走法是确定的,搜一下老鼠走法就行了. 代码 #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<queue> using namespace std; const int MAXN = 1005; inline int…