信息往往还存在着诸如树结构.图结构等更复杂的结构.这就需要用到递归神经网络 (Recursive Neural Network, RNN),巧合的是递归神经网络的缩写和循环神经网络一样,也是RNN,递归神经网络可以处理树.图这样的递归结构. 递归神经网络 神经网络的输入层单元个数是固定的,因此必须用循环或递归的方式来处理长度可变的输入.循环神经网络实现通过长度不定的输入分割为等长度的小块,然后再依次的输入到网络中,从而实现了神经网络对变长输入的处理.一个典型的例子是,当我们处理一句话的时候,我们…
目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID网络结构 5 参考资源 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先…
需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一…
2017-12-18 23:42:33 一.什么是深度学习 深度学习(deep neural network)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法.          --Wiki 在人工智能领域,有一个方法叫机器学习.在机器学习这个方法里,有一类算法叫神经网络.神经网络如下图所示: 上图中每个圆圈都是一个神经元,每条线表示神经元之间的连接.我们可以看到,上面的神经元被分成了多层,层与层之间的神经元有连接,而层内之间的神经元没有连…
前馈神经网络(Feedforward Neural Network - BP) 常见的前馈神经网络 感知器网络 感知器(又叫感知机)是最简单的前馈网络,它主要用于模式分类,也可用在基于模式分类的学习控制和多模态控制中.感知器网络可分为单层感知器网络和多层感知器网络. BP网络 BP网络是指连接权调整采用了反向传播(Back Propagation)学习算法的前馈网络.与感知器不同之处在于,BP网络的神经元变换函数采用了S形函数(Sigmoid函数),因此输出量是0~1之间的连续量,可实现从输入到…
尽管我们有很多经验丰富的软件开发人员,但是利用hard code的方法,要解决一些问题,我们的程序员还是优点捉襟见肘,这些问题包括,识别手写数字照片上的数字:分辨一张彩色照片上是否有一只猫咪:准确理解老婆说的“男人说话要是算数,母猪也会上树”这句话的真实含义,等等.这些我们人类处理起来得心应手的问题,计算机程序处理起来却显得很笨拙. 当然,有问题就要去寻找解决方案.其实在很早的时候,我们的计算机科学家前辈们就开始做了这方面的研究,提出的理论和算法有SVM,神经网络等.但是在那个GPU还没有发明,…
本文结构: 模型 训练算法 基于 RNN 的语言模型例子 代码实现 1. 模型 和全连接网络的区别 更细致到向量级的连接图 为什么循环神经网络可以往前看任意多个输入值 循环神经网络种类繁多,今天只看最基本的循环神经网络,这个基础攻克下来,理解拓展形式也不是问题. 首先看它和全连接网络的区别: 下图是一个全连接网络: 它的隐藏层的值只取决于输入的 x     而 RNN 的隐藏层的值 s 不仅仅取决于当前这次的输入 x,还取决于上一次隐藏层的值 s: 这个过程画成简图是这个样子:     其中,t…
(原文地址:维基百科) 简单介绍: 脉冲神经网络Spiking neuralnetworks (SNNs)是第三代神经网络模型,其模拟神经元更加接近实际,除此之外,把时间信息的影响也考虑当中.思路是这种,动态神经网络中的神经元不是在每一次迭代传播中都被激活(而在典型的多层感知机网络中却是),而是在它的膜电位达到某一个特定值才被激活.当一个神经元被激活,它会产生一个信号传递给其它神经元,提高或减少其膜电位. 在脉冲神经网络中,神经元的当前激活水平(被建模成某种微分方程)通常被觉得是当前状态,一个输…
上一篇博文中,我们介绍了神经网络中的神经元,那么该如何组织起来这些神经元,才能发挥出最好的效果去解决现实中的问题呢? 这是一个复杂的问题,在工程中,神经网络的架构也是训练的也是一种超参数,本节先在理论上做一个简单的介绍,后续会结合具体的例子,讲述神经网络中,网络架构对系统训练和效果的影响. 如图是一个简单的神经网络,包含了输入层,隐藏层和输出层. 输入层里的神经元又叫输入神经元,输入层比较特殊,没有输入,只有输出.…
线性模型通过特征间的现行组合来表达“结果-特征集合”之间的对应关系.由于线性模型的表达能力有限,在实践中,只能通过增加“特征计算”的复杂度来优化模型.比如,在广告CTR预估应用中,除了“标题长度.描述长度.位次.广告id,cookie“等这样的简单原始特征,还有大量的组合特征(比如”位次-cookie“ 表示用户对位次的偏好).事实上,现在很多搜索引擎的广告系统用的都是Logistic Regression模型(线性),而模型团队最重要的工作之一就是“特征工程 (feature engineer…