RFM】的更多相关文章

RFM

前面博客中讲到的聚类,聚类是对客户的一些特征进行分群,属于描述,不涉及客户价值的判断,然而在营销中,其实第一步应该是搞清楚谁才是你的关键客户,哪些用户的价值较高,这就需要用到RFM模型.RFM模型是众多的客户关系管理(CRM)分析模式中,被广泛提到和应用的模型之一.通过R(Recency,表示最后一笔订单距离现在的时间).F(Frequency,表示客户在最近一段时间内购买的次数).M  (Monetary,表示客户在最近一段时间内购买的金额)三个指标对客户进行RFM打分,根据客户的RFM得分来…
RFM模型:R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间内购买的次数,M (Monetary)表示客户在最近一段时间内购买的金额.一般原始数据为3个字段:客户ID.购买时间.购买金额,用数据挖掘软件处理,加权(考虑权重)得到RFM得分,对得分排序,输出营销名单topN! 上图来自于@数据挖掘与数据分析 下面我们采用IBM Modeler 14.1版本操作RFM模型:(采用数据挖掘技术来分析RFM是一件简单的工作,因为软件非常智能化,或者说基…
正好刚帮某电信行业完成一个数据挖掘工作,其中的RFM模型还是有一定代表性,就再把数据挖掘RFM模型的建模思路细节与大家分享一下吧!手机充值业务是一项主要电信业务形式,客户的充值行为记录正好满足RFM模型的交易数据要求. 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency).消费频率(Frequency).消费金额(Monetary). 我早期两篇博文已详述了RFM思想和IBM Modeler操作…
本文转载自微信公众号TIpDM. 每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 我们说RFM模型由R(最近消费时间间隔).F(消费频次)和M(消费总额)三个指标构成,通过该模型识别出高价值客户.但该模型并不完全适合所有行业,如航空行业,直接使用M指标并不能反映客户的真实价值,因为"长途低等舱"可能没有"短途高等舱"价值高.所以得根据实际行业灵活调整RFM模型的…
    笔者寄语:一般情况下离群值不应该直接删除,应该进行筛选,然后进行专门的离群值分析.笔者在这进行一下思考,在聚类基础之上的一种离群点检验. 基于聚类的离群点检测的步骤如下:数据标准化--聚类--求每一类每一指标的均值点--每一类每一指标生成一个矩阵--计算欧式距离--画图判断. 1.数据聚类 利用RFM客户价值模型,进行SOM(自组织映射神经网络模型),可以参考笔者的博客.一般的聚类方式,比如K-mean均值是比较常用的聚类方法(可见笔者的其他博客--R语言︱异常值检验.离群点分析.异常值…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.基本概念 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency).消费频率(Frequency).消费金额(Monetary). RFM模型:R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间…
RFM模型 在众多的客户价值分析模型中,RFM模型是被广泛应用的,尤其在零售和企业服务领域堪称经典的分类手段.它的核心定义从基本的交易数据中来,借助恰当的聚类算法,反映出对客户较为直观的分类指示,对于没有数据分析和机器学习技术支撑的初创企业,它是简单易上手的客户分析途径之一. RFM模型主要有三项指标: Recency:最近消费时间间隔 Frequency:消费频率 Monetary:消费金额 我们为客户在这三项指标上进行打分,那么总共会有27种组合的可能,使用K-Means算法,能够缩减到指定…
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share RFM模型---最有价值客户 评价一个客户是否好坏有上万个变量,但这些变量最终可降到三个维度,即RFM模型 模型通过一个客户的近期购买行为.购买的总体频率以及花了多少钱…
RFM用户分层模型在实际商业活动的数据分析中运用的还是挺多的,主要用于用户.商品.门店等等的分群和细分层次,分群之后就可以进行定向精准营销和推广以及促活和留存等等的运营活动. RFM是一种用户分层模型,就是从R.F.M三个维度来分析用户,其中 R(Recency):最后1次消费距今天数,为「近度」维度: F(Frequency):一段时间内的消费频次,为「频度」维度: M(Monetary):一段时间内的消费金额,为「额度」维度. 这个是基本的RFM模型,实际应用的时候,我们可以进行改造,将其中…
本文转自知乎 作者:接地气的陈老师 ————————————————————————————————————————————————————— 有同学问:“销售人员的分析,也可以用类似RFM的思路吗,比如看最近开单时间,开单频率, 开单金额,然后进行分类管理?” 答:得看管理的是什么.如果是提示销售人员流失的话,这么做会有用处.而且会比预测消费者的流失更准.为啥?因为很多快消品中,不存在真正意义上的“流失”用户.大部分快消品都是生活必需品,看起来用户流失了,投个优惠券就又回来了.连方便面这种垃圾…