numpy数组属性查看及断言】的更多相关文章

numpy数组属性查看:类型.尺寸.形状.维度   import numpy as np a1 = np.array([1,2,3,4],dtype=np.complex128) print(a1) print("数据类型",type(a1)) #打印数组数据类型 print("数组元素数据类型:",a1.dtype) #打印数组元素数据类型 print("数组元素总数:",a1.size) #打印数组尺寸,即数组元素总数 print("…
NumPy - 数组属性 这一章中,我们会讨论 NumPy 的多种数组属性. ndarray.shape 这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小. 示例 1 import numpy as np a = np.array([[1,2,3],[4,5,6]]) print a.shape 输出如下: (2, 3) 示例 2 # 这会调整数组大小 import numpy as np a = np.array([[1,2,3],[4,5,6]]) a.shape = (3,…
Numpy 数组的维数称为秩(rank),一维数组的秩为 1 , 二维数组的秩为 2 , 以此类推:在Numpy中, 每一个线性的数组称为是一个轴(axis),也就是维度(dimensios).比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组,所以一组数组就是 Numpy中的轴(axis),第一个轴相当于是底层数组,第二个是底层数组里的数组.而轴的数量-秩,就是数组的维数. 很多时候可以声明axis. axis = 0, 表示沿着第 0 轴进行操作,即对每一类进…
1.ndarray.shape 这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小 # -*- coding: utf-8 -*- import numpy as np a = np.array([[1,2,3],[4,5,6]]) print a print "Ndarray数组的维度为:" print a.shape print "调整数组大小--a.shape = (3,2)" a.shape = (3,2) print a print &quo…
1.秩.维度 NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions).比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组.所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组.而轴的数量——秩,就是数组的维数. 很多时候可以声明 axis.axis=0,表示沿着第 0 轴进行操作,即…
NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions).比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组.所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组.而轴的数量——秩,就是数组的维数. axis=0,表示沿着第 0 轴进行操作,即对每一列进行…
NumPy 教程目录 NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions).比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组.所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组.而轴的数量--秩,就是数组的维数. 很多时候可以声明 axis. ax…
import numpy as np   q = np.array([1,2,3,4],dtype=np.complex128)    print("数据类型",type(q))           #打印数组数据类型  print("数组元素数据类型:",q.dtype) #打印数组元素数据类型  print("数组元素总数:",q.size)      #打印数组尺寸,即数组元素总数  print("数组形状:",q.sh…
系列文章地址 NumPy 最详细教程(1):NumPy 数组 NumPy 超详细教程(2):数据类型 NumPy 超详细教程(3):ndarray 的内部机理及高级迭代 文章目录 Numpy 数组:ndarrayNumPy 数组属性1.ndarray.shape2.ndarray.ndim3.ndarray.flags4.ndarray.realNumPy 中的常数NumPy 创建数组1.numpy.empty2.numpy.zeros3.numpy.ones4.numpy.fullNumPy…
  1.几种常见numpy的属性 ndim:维度 shape:行数和列数 size:元素个数 >>> import numpy as np #导入numpy模块,np是为了使用方便的简写 >>> array = np.array([[1,2,3],[2,3,4]]) #列表转化为矩阵 >>> print(array) [[1 2 3] [2 3 4]] >>> >>> print('number of dim:',a…