Spark.ML之PipeLine学习笔记】的更多相关文章

地址: http://spark.apache.org/docs/2.0.0/ml-pipeline.html   Spark PipeLine 是基于DataFrames的高层的API,可以方便用户构建和调试机器学习流水线 可以使得多个机器学习算法顺序执行,达到高效的数据处理的目的   DataFrame是来自Spark SQL的ML DataSet 可以存储一系列的数据类型,text,特征向量,Label和预测结果   Transformer:将DataFrame转化为另外一个DataFra…
机器学习的定义: 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能. 机器学习的应用实例: 1.学习关联性 在零售业中,机器学习的应用就是购物篮分析,任务就是发现顾客所购商品之间的关联性. 2.分类 2.1信贷行业,做好风险评估,以及做好银行贷款问题中的信用评分.还有就是做好预测,通过学习过去的数据,…
1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一篇文档$d$中出现的词$w_0,w_1,...,w_n$, 这篇文章被分类为$c$的概率为$$p(c|w_0,w_1,...,w_n) = \frac{p(c,w_0,w_1,...,w_n)}{p(w_0,w_1,...,w_n)} = \frac{p(w_0,w_1,...,w_n|c)*p(c…
一.pipeline 一个典型的机器学习过程从数据收集开始,要经历多个步骤,才能得到需要的输出.这非常类似于流水线式工作,即通常会包含源数据ETL(抽取.转化.加载),数据预处理,指标提取,模型训练与交叉验证,新数据预测等步骤. 在介绍工作流之前,我们先来了解几个重要概念: DataFrame:使用Spark SQL中的DataFrame作为数据集,它可以容纳各种数据类型. 较之 RDD,包含了 schema 信息,更类似传统数据库中的二维表格.它被 ML Pipeline 用来存储源数据.例如…
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark SQL相关的知识,如果对Spark不熟的同学可以先看看之前总结的两篇文章: [原]Learning Spark (Python版) 学习笔记(一)----RDD 基本概念与命令 [原]Learning Spark (Python版) 学习笔记(二)----键值对.数据读取与保存.共享特性 #####…
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用.减少了延时处理,提高性能效率实用灵活性.也可以与hadoop切实相互结合. spark核心部分分为RDD.Spark SQL.Spark Streaming.MLlib.GraphX.Spark R等核心组件解决了很多的大数据问题,其完美的框架日受欢迎.其相应的生态环境包括zepplin等可视化方面…
一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果.因此,对以上多个步骤.进行抽象建模,简化为流水线式工作流程则存在着可行性,对利用spark进行机器学习的用户来说,流水线式机器学习比单个步骤独立建模更加高效.易用. 受 scikit-learn 项目的启发,并且总结了MLlib在处理复杂机器学习…
Spark ML Pipeline基于DataFrame构建了一套High-level API,我们可以使用MLPipeline构建机器学习应用,它能够将一个机器学习应用的多个处理过程组织起来,通过在代码实现的级别管理好每一个处理步骤之间的先后运行关系,极大地简化了开发机器学习应用的难度.        Spark ML Pipeline使用DataFrame作为机器学习输入输出数据集的抽象.DataFrame来自Spark SQL,表示对数据集的一种特殊抽象,它也是Dataset(它是Spar…
一.概述 通过之前两篇文章的学习,我们应该已经了解了多元分类的工作原理,图片的分类其流程和之前完全一致,其中最核心的问题就是特征的提取,只要完成特征提取,分类算法就很好处理了,具体流程如下: 之前介绍过,图片的特征是不能采用像素的灰度值的,这部分原理的台阶有点高,还好可以直接使用通过TensorFlow训练过的特征提取模型(美其名曰迁移学习). 模型文件为:tensorflow_inception_graph.pb 二.样本介绍 我随便在网上找了一些图片,分成6类:男孩.女孩.猫.狗.男人.女人…
一.概述 这次要解决的问题是输入一张照片,输出人物的颜值数据. 学习样本来源于华南理工大学发布的SCUT-FBP5500数据集,数据集包括 5500 人,每人按颜值魅力打分,分值在 1 到 5 分之间.其中包括男性.女性.中国人.外国人四个分类. SCUT-FBP5500_full.csv文件标记了每个图片人物的颜值打分数据.(我把分值一项乘以了20,变成了满分100分,不影响计算结果) 整个程序处理流程和前一篇图片分类的基本一致,唯一的区别,分类用的是多元分类算法,这次采用的是回归算法. 二.…