Selective Search for Object Recognition 简介 Selective Search是现在目标检测里面非常常用的方法,rcnn.frcnn等就是通过selective search方法得到候选框,然后进行分类,也就是传统的two stage方法.本篇也是我看到frcnn之后不得不看的一篇论文,大致将自己的理解记录下来,方便以后指正. Selective Search 算法目的 能够得到各种大小的框 由于图像中的物体可以有任意大小,所以selective sear…
Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. W. M. Smeulders. 引用: Uijlings, Jasper RR, et al. "Selective search for object recognition." International journal of computer vision, 104(2) (201…
Selective Search for Object Recoginition surgewong@gmail.com http://blog.csdn.net/surgewong       在前一段时间在看论文相关的工作,没有时间整理对这篇论文的理解.在前面的一篇博客[1]中有提到Selective Search[2],其前期工作利用图像分割的方法得到一些原始区域(具体内容请查看[1]),然后使用一些合并策略将这些区域合并,得到一个层次化的区域结构,而这些结构就包含着可能需要的物体.  …
Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. W. M. Smeulders. 引用: Uijlings, Jasper RR, et al. "Selective search for object recognition." International journal of computer vision, 104(2) (201…
UijlingsIJCV2013, Selective Search For Object Recognition code 算法思想 利用分割算法将图片细分成很多region, 或超像素. 在这个基础上, 将邻近的相似region融合起来. 聚合过程中得到的region作为proposal. ... 作者的代码通过mexFelzenSegmentIndex.cpp对Felzenszwalb---Efficient Graph-based Image Segmentation的代码做了以下封装:…
与 Selective Search 初次见面是在著名的物体检测论文 「Rich feature hierarchies for accurate object detection and semantic segmentation」,因此,这篇论文算是阅读 R-CNN 的准备. 这篇论文的标题虽然也提到了 Object Recognition ,但就创新点而言,其实在 Selective Search .所以,这里只简单介绍 Selective Search 的思想和算法过程,对于 Objec…
http://blog.csdn.net/charwing/article/details/27180421 Selective Search for Object Recognition 是J.R.R. Uijlings发表在2012 IJCV上的一篇文章.主要介绍了选择性搜索(Selective Search)的方法.选择性搜索综合了蛮力搜索(exhaustive search)和分割(segmentation)的方法.选择性搜索意在找出可能的目标位置来进行物体的识别.与传统的单一策略相比,…
今天介绍 IJCV 2013 年的一篇文章,Selective Search for Object Recognition,这个是后面著名的DL架构 R-CNN 的基础,后续介绍 R-CNN 的时候,会发现 R-CNN 和这篇文章里介绍的算法非常类似. 做模式识别的人都知道,目标识别与目标检测是两个不同的东西,目标检测比目标识别要难得多,目标识别可以看做是一个分类问题,给定一张测试图,我们只要判断这张图里有没有某一特定的物体,而目标检测,需要在这张图上标出物体的具体位置,这可以看做是一个回归问题…
Selective Search for Object Recognition 是J.R.R. Uijlings发表在2012 IJCV上的一篇文章.主要介绍了选择性搜索(Selective Search)的方法.选择性搜索综合了蛮力搜索(exhaustive search)和分割(segmentation)的方法.选择性搜索意在找出可能的目标位置来进行物体的识别.与传统的单一策略相比,选择性搜索提供了多种策略,并且与蛮力搜索相比,大幅度降低搜索空间,让我们可以用到更好的识别算法. 现实中,很多…
0 - 背景 在目标检测任务中,我们希望输入一副图像,输出目标所在的位置以及目标的类别.最常用的算法是滑动窗口方法,但滑动窗口其实相当于穷举图像中的所有子图像,其效率低且精度也受限.该论文提出一种新的生成目标检测框的方法selective search. 1 - 算法流程 step 0:生成区域集R step 1:计算区域集R中每个相邻区域的相似度S step 2:找出最相似的两个区域,将其合并成新区域添加到R中 step 3:从S中移除所有与step 2中相关的区域 step 4:计算新集与所…