UVALIVE 4556 The Next Permutation】的更多相关文章

4556 The Next PermutationFor this problem, you will write a program that takes a (possibly long) string of decimal digits, andoutputs the permutation of those decimal digits that has the next larger value (as a decimal number)than the input number. F…
Permutation Graphs Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Status Practice UVALive 6508 #include<stdio.h> #include<string.h> ],a[],b[],c[],b1[]; long long num; void merg_sort(int a[],int l,int r) { int…
题目传送门 /* 题意:给了两行的数字,相同的数字连线,问中间交点的个数 逆序数:第一行保存每个数字的位置,第二行保存该数字在第一行的位置,接下来就是对它求逆序数 用归并排序或线段树求.想到了就简单了:) */ #include <cstdio> #include <algorithm> #include <cstring> #include <cmath> #include <vector> using namespace std; typed…
题意:有一个由1到k组成的序列,最小是1 2 … k,最大是 k k-1 … 1,给出n的计算方式,n = s0 * (k - 1)! + s1 * (k - 2)! +… + sk-1 * 0!, 给出s1…sk,输出序列里第n大的序列. 析:我们先看第一数,如果第一个数是2,那么它前面至少有(k-1)!个排列,然后1开头肯定比2要小,同理,再考虑第二个数,在考虑再二数时, 要注意把已经搞定的数去掉,所以我们用线段树进行单点更新,当然也可以用二分+数状数组. 代码如下: #pragma com…
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…
Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empty list if no palindromic permutation could be form. For example: Given s = "aabb", return ["abba", "baab"]. Given s = "a…
Given a string, determine if a permutation of the string could form a palindrome. For example,"code" -> False, "aab" -> True, "carerac" -> True. Hint: Consider the palindromes of odd vs even length. What difference d…
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…
Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers. If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order). The replaceme…
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…