Hadoop MapReduce 初步学习总结】的更多相关文章

在Hadoop中一个作业被提交后,其后具体的执行流程要经历Map任务的提交中间结果处理,Reduce任务的分配和执行直至完成这些过程,下面就是MapReduce中作业详细的执行流程图(摘自<Hadoop实战>). 在整个过程中,客户端中,编写MapReduce代码,配置并提交作业:JobTracker中负责初始化作业,分配作业,与TaskTracker进行通信,协调整个作业的运行:TaskTracker要保持与JobTracker的通信,在分配的数据分片上执行Map或Reduce任务:而在整个…
一直在搞spark,也没时间弄hadoop,不过Hadoop基本的编程我觉得我还是要会吧,看到一篇不错的文章,不过应该应用于hadoop2.0以前,因为代码中有  conf.set("mapred.job.tracker", "192.168.1.2:9001");新框架中已改为 Yarn-site.xml 中的 resouceManager 及 nodeManager 具体配置项,新框架中历史 job 的查询已从 Job tracker 剥离,归入单独的mapre…
开始聊MapReduce,MapReduce是Hadoop的计算框架,我学Hadoop是从Hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能是我做技术研究的思路有关,我开始学习某一套技术总是想着这套技术到底能干什么,只有当我真正理解了这套技术解决了什么问题时候,我后续的学习就能逐步的加快,而学习hdfs时候我就发现,要理解hadoop框架的意义,hdfs和mapreduce是密不可分,所以当我写分布式文件系统时候,总是感觉自己的理解肤浅…
Hadoop 涉及的知识点如下图所示,本文将逐一讲解: 本文档参考了关于 Hadoop 的官网及其他众多资料整理而成,为了整洁的排版及舒适的阅读,对于模糊不清晰的图片及黑白图片进行重新绘制成了高清彩图. 目前企业应用较多的是Hadoop2.x,所以本文是以Hadoop2.x为主,对于Hadoop3.x新增的内容会进行说明! 二.MapReduce 1. MapReduce 介绍 MapReduce思想在生活中处处可见.或多或少都曾接触过这种思想.MapReduce的思想核心是"分而治之"…
看过Tom White写的Hadoop权威指南(大象书)的朋友一定得从第一个天气预报的Map Reduce程序所吸引, 殊不知,Tom White大牛虽然在书中写了程序和讲解了原理,但是他以为你们都会部署了,这里轻描淡写给 带过了,这样就给菜鸟们留了课题,其实在跑书中的程序的时候,如果没经验,还是会踩坑的. 这里笔者就把踩过的坑说一下,以防后来人浪费时间了. 1. 首先,你得下载书中的ncdc气象原始数据,这个可以从书中的官网下载. 作者比较做人家,只给了2年的历史数据,无妨,2年也可以运行.…
转自:http://pieux.github.io/blog/2013-05-08-learn-hadoop-the-definitive-guide.html 1 前言 Hadoop的内部工作机制: 分布式系统理论, 实际工程和常识于一体的系统. 但是,Hadoop提供的用于构建分布式系统的工具–数据存储, 数据分析,和协调处理–都非常简单. 本书的结构: 1章介绍历史, 2章介绍MapReduce,3章剖析Hadoop文件系统, 特别是HDFS,4章包含Hadoop的基本I/O操作:数据完整…
MapReduce简单介绍 声明:本文是本人基于Hadoop权威指南学习的一些个人理解和笔记,仅供学习參考,有什么不到之处还望指出,一起学习一起进步. 转载请注明:http://blog.csdn.net/my_acm 上一篇介绍了什么是Hadoop.Hadoop的作用等.本篇相同基于Hadoop权威指南,结合迪伦的Hadoop的视频教程对MapReduce做一个介绍. 1. MapReduce是Hadoop的核心之中的一个.MapReduce分为两个部分,Mapper和Ruducer模块.简单…
Hadoop Streaming框架学习(二) 1.常用Streaming命令介绍 使用下面的命令运行Streaming MapReduce程序: 1: $HADOOP_HOME/bin/hadoop/hadoop streaming args 其中args是streaming参数,下面是参数列表: -input <path> 输入数据路径 -output <path> 输出数据路径 -mapper <cmd|JavaClassName> mapper可执行程序或Jav…
Hadoop Streaming框架学习(一) Hadoop Streaming框架学习(一) 2013-08-19 12:32 by ATP_, 473 阅读, 3 评论, 收藏, 编辑 1.Hadoop&Streaming简介 1.1 Hadoop简介 Hadoop MapReduce是一个用于处理海量数据的分布式计算框架,这个框架解决了诸如数据分布式存储,作业调度,容错,机器间通信等复杂问题,可以让没有分布式处理经验的工程师非常简单的写出并行分布式程序. MapReduce采用“分而治之”…
Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS)的开源实现. MapReduce是Google MapReduce的开源实现. HDFS和MapReduce实现是完全分离的,并不是没有HDFS就不能MapReduce运算. 本文主要参考了以下三篇博客学习整理而成. 1. Hadoop示例程序WordCount详解及实例 2. hadoop 学习笔…