3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MB Submit: 404  Solved: 249 [Submit][Status][Discuss] Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Output 一个浮点数,保留二位小数.表示答案,数据保证答案大于0 Sam…
题解 目标就是 \[Maximize\ \lambda = \frac{X-Y}{k}\] 按照分数规划的一般规律, 构造: \[g(\lambda) = \lambda k + Y - X\] 由于总流量不变,我们考虑转移流量. 注意到,对于每条边,我们如果增加其容量则会增加(b[i]+d[i]+lambda)点值,如果减少就是(a[i]-d[i]+lambda)点值. 如果可以构成一个负环,那么就一定可以更优. 所以我们二分\(\lambda\),check即可. 代码 #include <…
纪念博客又一次爆炸了 首先,对于本题中,我们可以发现,保证存在正整数解,就表示一定费用会降低.又因为一旦加大的流量,费用一定会变大,所以总流量一定是不变的 那么我们这时候就需要考虑一个退流的过程 对于原图每一条\(u->v,c>0\)的边,我们在新图中建一条\(v->u,价值是a-d\) 表示退这个流要花费的费用,相当于退流的过程 对于原图任意一条\(u->v\)的边,我们在新图中建一条\(u->v,价值是b+d\)的边,相当于扩流的过程 那么只有成环的时候,才能满足流量平衡…
有一个 DAG,有一个源点,一个汇点和很多条边,每条边有花费 $d_i$ 和最大流量 $c_i$,可以花 $b_i$ 的钱把最大流量增加 $1$,花 $a_i$ 的钱把最大流量减少 $1$ 现在要进行调整,要求每条边都满流且总流量不变,假设进行了 $k$ 次调整,要求最大化 $\frac{调整前总费用 - 调整费用 - 调整后总费用}{k}$ sol: 肯定是分数规划 然后发现"减少最大容量"这件事不是很好搞,于是想到先把它全减了再反悔 这样对于原图每条边,我们要建两条边分别表示增加流…
[BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行相反的修改 现在要求最大化\(\frac{X-Y}{K}\) 二分答案\(mid\) 式子变为\(X-Y-K·mid\geq 0\) 换而言之,相当于给每次修改操作额外付出一个代价\(mid\) 要使得费用+修改代价最小 对于扩容我们很好处理 对于每条边再额外连一条边 容量为\(inf\)(可以无限…
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Status][Discuss] Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Output 一个浮点数,保留二位小数.表示答案,数据保证答案大于0 Sampl…
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status][Discuss] Description ................. Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Output 一个浮点数,保留二位小数.表示答…
3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费di,限制网络流量不能改变.调整后必须满 流,设调整了K 次,使得费用减少量为D,最大化D/K 就是给你一个费用流,但不是最小,增广的费用为b+d,退流的费用为a-d 就是正反向增广路 根据消圈定理,流f为mcmf当且仅当无负费用增广圈 01分数规划+spfa求负环即可 #include <iost…
「SCOI2014」方伯伯运椰子 可以看出是分数规划 然后我们可以看出其实只需要改变1的流量就可以了,因为每次改变要保证流量守恒,必须流成一个环,在正负性确定的情况下,变几次是无所谓的. 然后按照套路,设 \[ ans=\frac{X-Y}{k}\\ ans\times k =X-Y\\ ans\times k=-\sum w_i\\ \sum ans-w_i=0 \] 从第二部到第三步是把X和Y中的共同边都减掉了 \(w\)是根据扩容或者缩容建的边权为\(b+d,a-d\)的边权集合 注意一点…
即在总流量不变的情况下调整每条边的流量.显然先二分答案变为求最小费用.容易想到直接流量清空跑费用流,但复杂度略有些高. 首先需要知道(不知道也行?)一种平时基本不用的求最小费用流的算法——消圈法.算法基于下面的定理:如果残量网络中有负环,当前费用流一定不是最小费用流(似乎很显然?).注意到分数规划之后,我们需要知道的只是在调整边权后的网络里,最小费用流是否可能比原来更优,于是构造出残量网络,spfa判负环即可. #include<iostream> #include<cstdio>…
传送门 题意咕咕咕有点麻烦不想写 思路: 考虑加了多少一定要压缩多少,这样可以改造边. 于是可以通过分数规划+spfaspfaspfa解决. 代码: #include<bits/stdc++.h> #define ri register int #define fi first #define se second using namespace std; const int rlen=1<<18|1; inline char gc(){ static char buf[rlen],…
正题 题目链接:https://www.luogu.com.cn/problem/P3288 题目大意 给出\(n\)个点\(m\)条边的一张图,没条边\(i\)流量为\(c_i\),费用是\(d_i\),然后缩小一个流量费用是\(a_i\),增加一个流量费用是\(b_i\). 要求改动图之后最大流不减少 假设减少的费用是\(\Delta X\),改动次数是\(k\),求最大化\(\frac{\Delta X}{k}\) \(1\leq n\leq 5000,1\leq m\leq 3000\)…
题目链接 BZOJ3597 题解 orz一眼过去一点思路都没有 既然是流量网络,就要借鉴网络流的思想了 我们先处理一下那个比值,显然是一个分数规划,我们二分一个\(\lambda = \frac{X - Y}{k}\) 如果\(\lambda\)成立,则 \[\lambda \le \frac{X - Y}{k}\] 即 \[\lambda k + (Y - X) \le 0\] 所以我们只需要判断是否存在一种方案使得这个式子成立 依照网络流的思想,撤回流量就往反向边走,扩展流量往正向边 对于边…
题面 传送门 Sol 消圈定理:如果一个费用流网络的残量网络有负环,那么这个费用流不优 于是这个题就可以建出残量网络,然后分数规划跑负环了 # include <bits/stdc++.h> # define IL inline # define RG register # define Fill(a, b) memset(a, b, sizeof(a)) using namespace std; typedef long long ll; IL int Input(){ RG int x =…
嘟嘟嘟 01分数规划思维题. 题中要求交通总量不减少,那么如果总量增加的话,总费用就会增加,所以一定不是更优的解.那么总量守恒. 这是不是就想到了网络流?对于每一个节点流入量等于流出量.然后就是很有思维的一个转化了:把压缩看成退流,把扩容看成增广. 边(x, y)一次压缩,就建一条y -> x,容量为a - d的边. 边(x, y)一次增广,就建一条x -> y,容量为b + d的边.也就是一次调整多出来的费用.那么这样建完图后,图中的一个环就代表一种调整方案! 回头看题,让求某一个比值最小,…
Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Output 一个浮点数,保留二位小数.表示答案,数据保证答案大于0 Sample Input 5 10 1 5 13 13 0 412 2 5 30 18 396 148 1 5 33 31 0 39 4 5 22 4 0 786 4 5 13 32 0 561 4 5 3 48 0 460 2 5…
题目链接 分数规划题,详见luogu题解 #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> #include<cstdlib> #include<cmath> #define maxn 100010 #define eps 1e-9 using namespace std; inline long long read(){ ,f=; char…
题面 很有趣的一道题,看起来是个神奇网络流,其实我们只要知道网络的一些性质就可以做这道题了 因为题目要求流量守恒,所以我们其实是在网络中搬运流量,最终使得总费用减小,具体来说我们可以直接把这种“搬运”的关系建出来: 对于一条从$u$到$v$的边,从$u$向$v$连一条$b+d$的边,如果其上限不为零,再从$v$向$u$连一条$a-d$的边 那么得到的这张新图其实是描述了图中的费用流,一个合法的搬运方案就是一个环(转了一圈保证流量还是守恒的),然后有一个叫做消圈定理的东西: 消圈定理:残量网络里如…
题目传送门 传送门 题目大意 给定一个费用流,每条边有一个初始流量$c_i$和单位流量费用$d_i$,增加一条边的1单位的流量需要花费$b_i$的代价而减少一条边的1单位的流量需要花费$a_i$的代价.要求最小化总费用减少量和调整次数的比值(至少调整一次). 根据基本套路,二分答案,移项,可以得到每条边的贡献. 设第$i$条边的流量变化量为$m_i$,每次变化花费的平均费用为$w_i$.那么有 $\sum c_id_i - \sum (c_i + m_i)d_i + |m_i|(w_i + mi…
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3597 Description 四川的方伯伯为了致富,决定引进海南的椰子树.方伯伯的椰子园十分现代化,椰子园中有一套独特的交通系统. 现在用点来表示交通节点,边来表示道路.这样,方伯伯的椰子园就可以看作一个有 n + 2 个交通节点,m条边的有向无环图.n +1 号点为入口,n +2 号点为出口.每条道路都有 6 个参数,ui,vi,ai,bi,ci,di,分别表示,该道路从 ui 号点通…
题目 现在,保密成为一个很重要也很困难的问题.如果没有做好,后果是严重的.比如,有个人没有自己去修电脑,又没有拆硬盘,后来的事大家都知道了. 当然,对保密最需求的当然是军方,其次才是像那个人.为了应付现在天上飞来飞去的卫星,军事基地一般都会建造在地下. 某K国的军事基地是这样子的:地面上两排大天井共n1个作为出入口,内部是许多除可以共享出入口外互不连通的空腔,每个空腔有且只有两个出入口,并且这两个出入口不会在同一排.为了方便起见,两排出入口分别编号为1,3,5-和2,4,6-并且最大的编号为n1…
题目描述 有\(n\)个物品,买第\(i\)个物品要花费\(a_i\)元.还有\(m\)对关系:同时买\(p_i,q_i\)两个物品会获得\(b_i\)点收益. 设收益为\(B\),花费为\(A\),求\(\lceil\frac{B}{A}\rceil-1\) \(n\leq 400,m\leq 200000,1\leq a_i,b_i\leq 100\) 题解 显然这是一个分数规划问题. 二分答案\(s\),判断答案是否能大于\(s\) \[ \begin{align} \frac{B}{A}…
题意:给定无向图,每条边有权值,求该图的一个割集,是的该割集的平均边权最小 Amber的<最小割模型在信息学竞赛中的应用>中讲的很清楚了. 二分答案k,对每条边进行重新赋值为原边权-k,求最大流, 可看这里:http://hi.baidu.com/buaa_babt/item/a08fbb45599dc722fb89602a 二分枚举当前的平均边长l,对于边权<=l的直接加入当前最优割集,边权>l的将容量设为边权-l,加入到网络中,求出最小割的和sum,sum加上刚刚那些小于l的边…
题目: Description 在一家公司中,人事部经理与业务部经理不和.一次,总经理要求人事部从公司的职员中挑选出一些来帮助业务部经理完成一项任务.人事部经理发现,在公司的所有职员中,有一些人相处得很不好.如果把他们同时放在一个工作小组中,他们将会给主管带来不小的麻烦.人事部经理还知道,在一个工作小组中,主管人员的麻烦程度可以认为是(带来麻烦的人的对数/总人数) .于是,人事部经理决定选取这样的一些人,使得业务部经理的麻烦度最大.你的任务是帮助人事部经理达到他的目的. 在这样的一个公司中,保证…
[BZOJ2285][SDOI2011]保密(分数规划,网络流) 题面 BZOJ 洛谷 题解 首先先读懂题目到底在干什么. 发现要求的是一个比值的最小值,二分这个最小值\(k\),把边权转换成\(t-sk\),其中\(t\)是时间,\(s\)是安全系数.那么通过一遍\(SPFA\)可以求出到达所有的目标点的危险性的最小值,用\(SPFA\)是因为存在负边权.显然到达每个位置的危险性最小值是独立计算的. 因为是每个空腔都要探索其出入口中的一个,不难发现这个东西就是一个最小割(似乎是最大权闭合子图?…
[BZOJ3232]圈地游戏(分数规划,网络流) 题面 BZOJ 题解 很神仙的一道题. 首先看到最大化的比值很容易想到分数规划.现在考虑分数规划之后怎么计算贡献. 首先每条边的贡献就变成了\(mid*C\),这个显然啊.考虑一个封闭图形如何计算答案. 发现被计算入答案的边一定是一侧有一个格子被圈进去了,另外一侧的格子没有被圈进去.那么这很像一个最小割.假设格子和源点相连表示被选进了答案,和汇点相连表示在答案以外.那么很明显把一条边两侧的格子给连起来,流量为\(mid*C\).怎么越来越像一个最…
[BZOJ4819]新生舞会(分数规划,网络流) 题面 BZOJ Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴.有n个男生和n个女生参加舞会 买一个男生和一个女生一起跳舞,互为舞伴.Cathy收集了这些同学之间的关系,比如两个人之前认识没计算得出 a[i][j] ,表示第i个男生和第j个女生一起跳舞时他们的喜悦程度.Cathy还需要考虑两个人一起跳舞是否方便, 比如身高体重差别会不会太大,计算得出 b[i][j],表示第i个男生和第j个女生…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为边围成的形状像一个环,所以把格子的贡献也放到边上,然后正常判环. 放到边上的方法就是:比如竖着的边,可以在每一行上维护该行格子值前缀和,然后指定那个围成的形状是,比如,逆时针的,那么向上的边就加上到它为止的前缀值,向下的边就减去到它为止的前缀值,然后就能判环了! 这样一定只有一个环.但多个环答案不会…
传送门 题意:求无向图割集中平均边权最小的集合. 论文<最小割模型在信息学竞赛中的应用>原题. 分数规划.每一条边取上的代价为1. #include <bits/stdc++.h> using namespace std; inline int read() { , f = ; char ch = getchar(); ; ch = getchar(); } + ch - ; ch = getchar(); } return x * f; } ; ; struct Edge { i…
Description 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的第 j 位. 现在方伯伯要玩一个游戏,商场会给方伯伯两个整数 L,R.方伯伯要把位置在 [L, R] 中的每个人的石子都合并成一堆石子.每次操作,他可以选择一个人面前的两堆石子,将其中的一堆中的某些石子移动到另一堆,代价是移动的石子数量 * 移动的距离.商场承诺,方伯伯只要完成任务,就给他一些椰子,…