对Numpy数组按axis运算的理解】的更多相关文章

Python的Numpy数组运算中,有时会出现按axis进行运算的情况,如 >>> x = np.array([[1, 1], [2, 2]]) >>> x array([[1, 1], [2, 2]]) >>> x.sum(axis=0)%x.sum(axis=1) 自己初学时,容易搞混axis=0到底代表的是按行运算还是按列运算,而且这仅是针对二维数组情况,更高维数组就无法仅仅用行列来区分了. 经过自己的研究和实践后,谈一下自己的理解,读者如有不赞…
怎样快速找出两个数组中相同的元素? numpy.isin(element,test_elements,assume_unique = False,invert = False ) 计算test_elements中的元素,仅在元素上广播.返回与元素相同形状的布尔数组,该元素为True,其中元素元素位于test_elements中,否则返回 False. NumPy数组的集合运算 import numpy as np # 创建一维 ndarray x x = np.array([1,2,3,4,5]…
创建一个2*2的数组,计算对角线上元素的和 import numpy as np a = np.arange(4).reshape(2,2) print (a) #[[0 1] # [2 3]] n1 = a[0,0] print (n1) # 0 n2 = a[0,1] print (n2) # 1 n3 = a[1,0] print (n3) # 2 n4 = a[1,1] print (n4) # 3 sum_1 = n1 + n3 print (sum_1) # 2 sum_2 = n2…
Tensor多维数组和axis的理解 今天在编写程序的时候一直对于axis=0或等于1搞不明白,这样对于整个numpy或者是tensorflow的基本运算和数据处理都会很模糊,所以花了一些时间来搞清楚这个问题.在这里将其记录下来. 多维数组 从初中到现在一直在学习数学的过程也是一个一直在学习坐标轴扩展的过程,最开始的数轴,之后到笛卡尔直角坐标系,再到后来的空间坐标系,学习的东西也从一维到二维再至三维,进入大学后学习了矩阵,进入研究生后又学到了张量,但是因为时间有限并没有深入研究过,所以在这里只做…
[开发技巧]·Numpy中对axis的理解与应用 1.问题描述 在使用Numpy时我们经常要对Array进行操作,如果需要针对Array的某一个纬度进行操作时,就会用到axis参数. 一般的教程都是针对二维矩阵操作axis,当axis为0时,计算方向时列,当axis为1时计算方向为行. 但是这样的描述并不能让我们真正理解axis的含义.下面我一个三维Array,来带领大家深入理解axis 2.实战讲解 >>> import numpy as np >>> arrays…
1. 数组的集合运算 1.1. 并集 np.union1d(a,b)计算数组的并集: In [1]: import numpy as np In [2]: a = np.array([1,2,3]) In [3]: b = np.array([3,4,5]) In [4]: np.union1d(a,b) Out[4]: array([1, 2, 3, 4, 5]) 1.2. 交集 np.intersect1d(a,b)计算数组的交集: In [10]: import numpy as np I…
numpy数组的运算 数组的乘法 >>> import numpy as np >>> arr=np.array([[1,2,3],[4,5,6]]) >>> arr array([[1, 2, 3], [4, 5, 6]]) >>> arr*arr array([[ 1, 4, 9], [16, 25, 36]]) 数组的减法 >>> arr-arr array([[0, 0, 0], [0, 0, 0]]) 数组…
在Numpy中建立了数组或者矩阵后,需要访问数组里的成员,改变元素,并对数组进行切分和计算. 索引和切片 Numpy数组的访问模式和python中的list相似,在多维的数组中使用, 进行区分: 在python的list 下: a = [1,2,4] print a[2:] 打印出: [4] 这是一个数组,在Numpy的多维数组中也采用相同的模式进行数组的访问: import numpy as np a = np.arange(1,37) a = a.reshape(6,6) print a 打…
一.Numpy 数值类型 1.前言:Python 本身支持的数值类型有 int(整型, long 长整型).float(浮点型).bool(布尔型) 和 complex(复数型).而 Numpy 支持比 Python 本身更为丰富的数值类型,细分如下: 2.bool:布尔类型,1 个字节,值为 True 或 False. 3.int:整数类型,通常为 int64 或 int32 . 4.intc:与 C 里的 int 相同,通常为 int32 或 int64. 5.intp:用于索引,通常为 i…
可以来我的Github看原文,欢迎交流. https://github.com/AsuraDong/Blog/blob/master/Articles/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/numpy%E6%95%B0%E7%BB%84%E3%80%81%E5%90%91%E9%87%8F%E3%80%81%E7%9F%A9%E9%98%B5%E8%BF%90%E7%AE%97.md import numpy as np import pandas as pd…