大家好,在100天搞定机器学习|Day63 彻底掌握 LightGBM一文中,我介绍了LightGBM 的模型原理和一个极简实例.最近我发现Huggingface与Streamlit好像更配,所以就开发了一个简易的 LightGBM 可视化调参的小工具,旨在让大家可以更深入地理解 LightGBM. 网址: https://huggingface.co/spaces/beihai/LightGBM-parameter-tuning 我只随便放了几个参数,调整这些参数可以实时看到模型评估指标的变化…
这是个人在竞赛中对LGB模型进行调参的详细过程记录,主要包含下面六个步骤: 大学习率,确定估计器参数n_estimators/num_iterations/num_round/num_boost_round: 确定num_leaves和max_depth 确定min_data_in_leaf 确定bagging_fraction+bagging_freq和feature_fraction 确定L1L2正则reg_alpha和reg_lambda: 降低学习率 [这里必须说一下,lightbg的参…
调参方法:网格调参 tf.layers.conv2d()中的padding参数 取值“same”,表示当filter移出边界时,给空位补0继续计算.该方法能够更多的保留图像边缘信息.当图片较小(如CIFAR-10中的32*32)时,推荐使用该选项 取值“valid”,表示当filter移出边界时,舍弃该filter tf.layers.conv2d()中的filters参数 一般取值: 一般越靠后的层,我们将它的filters取的更多一些,一是为了保留更多的信息,二是为了提取更多抽象的特征 tf…
本文链接:https://blog.csdn.net/u012735708/article/details/837497031. 概述在竞赛题中,我们知道XGBoost算法非常热门,是很多的比赛的大杀器,但是在使用过程中,其训练耗时很长,内存占用比较大.在2017年年1月微软在GitHub的上开源了LightGBM.该算法在不降低准确率的前提下,速度提升了10倍左右,占用内存下降了3倍左右.LightGBM是个快速的,分布式的,高性能的基于决策树算法的梯度提升算法.可用于排序,分类,回归以及很多…
最优化方法 调参方法 ml算法 梯度下降gd grid search lr 梯度上升 随机梯度下降 pca 随机梯度下降sgd  贝叶斯调参 lda 牛顿算法   knn 拟牛顿算法   kmeans 遗传算法   tree 蚁群算法    gbdt 模拟退火    xgboost 反向传播算法    lightgbm  坐标上升?   svm     rf 一.调参的思路: 如针对上面的问题,对x1和x2两个参数调优,假设起始点为绿色点, 1.grid search(全部交叉):计算所有上面的…
原文地址: https://blog.csdn.net/linxid/article/details/81189154 -------------------------------------------------------------------------------------------------- 一.Python实现自动贝叶斯调整超参数 [导读]机器学习中,调参是一项繁琐但至关重要的任务,因为它很大程度上影响了算法的性能.手动调参十分耗时,网格和随机搜索不需要人力,但需要很长…
 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share https://www.imooc.com/article/43784?block_id=tuijian_wz 鄙人调参新手,最近用lightGBM有…
上一节对XGBoost算法的原理和过程进行了描述,XGBoost在算法优化方面主要在原损失函数中加入了正则项,同时将损失函数的二阶泰勒展开近似展开代替残差(事实上在GBDT中叶子结点的最优值求解也是使用的二阶泰勒展开(详细上面Tips有讲解),但XGBoost在求解决策树和最优值都用到了),同时在求解过程中将两步优化(求解最优决策树和叶子节点最优输出值)合并成为一步.本节主要对XGBoot进行实现并调参. XGBoost框架及参数 XGBoost原生框架与sklearn风格框架 XGBoost有…
在此之前,调参要么网格调参,要么随机调参,要么肉眼调参.虽然调参到一定程度,进步有限,但仍然很耗精力. 自动调参库hyperopt可用tpe算法自动调参,实测强于随机调参. hyperopt 需要自己写个输入参数,返回模型分数的函数(只能求最小化,如果分数是求最大化的,加个负号),设置参数空间. 本来最优参数fmin函数会自己输出的,但是出了意外,参数会强制转化整数,没办法只好自己动手了. demo如下: import lightgbm as lgb from sklearn.metrics i…
在做数据处理时,需要用到不同的手法,如特征标准化,主成分分析,等等会重复用到某些参数,sklearn中提供了管道,可以一次性的解决该问题 先展示先通常的做法 import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression df = pd.read…
gridsearchcv: https://www.cnblogs.com/bjwu/p/9307344.html gridsearchcv+lightgbm cv函数调参: https://www.twblogs.net/a/5be215942b717720b51cce01/zh-cn 使用gridsearchcv调参时,某一轮下已经确定的参数(比如步长为1时已经确定max_depth),之后就不用调了. 为了节省时间,每次选择的参数搜索范围不要太大(不是指步长) .建议多调几轮,但每轮搜索每…
lightgbm使用leaf_wise tree生长策略,leaf_wise_tree的优点是收敛速度快,缺点是容易过拟合. # lightgbm关键参数 # lightgbm调参方法cv 代码github地址 # -*- coding: utf-8 -*- """ # 作者:wanglei5205 # 邮箱:wanglei5205@126.com # 博客:http://cnblogs.com/wanglei5205 # github:http://github.com/w…
一.scikit-learn库中的网格搜索调参 1)网格搜索的目的: 找到最佳分类器及其参数: 2)网格搜索的步骤: 得到原始数据 切分原始数据 创建/调用机器学习算法对象 调用并实例化scikit-learn中的网格搜索对象 对网格搜索的实例对象fit(得到最佳模型及参数) 预测 以kNN算法为例,Jupyter中运行: import numpy as np from sklearn import datasets # 得到原始数据 digits = datasets.load_digits(…
参考: 原视频:李宏毅机器学习-Keras-Demo 调参博文1:深度学习入门实践_十行搭建手写数字识别神经网络 调参博文2:手写数字识别---demo(有小错误) 代码链接: 编程环境: 操作系统:win7 - CPU anaconda-Python3-jupyter notebook tersonFlow:1.10.0 Keras:2.2.4 背景: 视频里宝可梦大师提供的部分参数设置不能得到好的结果,这里记录一下后续调参 1-载入数据报错的问题: 载入数据运行时报错:[WinError 1…
本文是对100天搞定机器学习|Day33-34 随机森林的补充 前文对随机森林的概念.工作原理.使用方法做了简单介绍,并提供了分类和回归的实例. 本期我们重点讲一下: 1.集成学习.Bagging和随机森林概念及相互关系 2.随机森林参数解释及设置建议 3.随机森林模型调参实战 4.随机森林模型优缺点总结 集成学习.Bagging和随机森林 集成学习 集成学习并不是一个单独的机器学习算法,它通过将多个基学习器(弱学习器)进行结合,最终获得一个强学习器.这里的弱学习器应该具有一定的准确性,并且要有…
一.XGBoost参数解释 XGBoost的参数一共分为三类: 通用参数:宏观函数控制. Booster参数:控制每一步的booster(tree/regression).booster参数一般可以调控模型的效果和计算代价.我们所说的调参,很这是大程度上都是在调整booster参数. 学习目标参数:控制训练目标的表现.我们对于问题的划分主要体现在学习目标参数上.比如我们要做分类还是回归,做二分类还是多分类,这都是目标参数所提供的. Note: 我下面介绍的参数都是我觉得比较重要的, 完整参数请戳…
本文重点阐述了xgboost和lightgbm的主要参数和调参技巧,其理论部分可见集成学习,以下内容主要来自xgboost和LightGBM的官方文档. xgboost Xgboost参数主要分为三大类: General Parameters(通用参数):设置整体功能 Booster Parameters(提升参数):选择你每一步的booster(树or回归) Learning Task Parameters(学习任务参数):指导优化任务的执行 General Parameters(通用参数)…
TF-IDF模型调参 1. 调TfidfVectorizer的参数 ngram_range, min_df, max_df: 上一篇博客调了ngram_range这个参数,得出了ngram_range=(1, 4)时效果最好这个结论,并在线上验证了下. 本篇博客继续调其他的参数.考虑到训练的速度,先将ngram_range设置为(1, 1),调min_df: min_df train-mlogloss val-mlogloss 1 0.103793 0.406085 2 0.1091895 0.…
一.GBM参数 总的来说GBM的参数可以被归为三类: 树参数:调节模型中每个决策树的性质 Boosting参数:调节模型中boosting的操作 其他模型参数:调节模型总体的各项运作 1.树参数 现在我们看一看定义一个决策树所需要的参数.注意我在这里用的都是python里scikit-learn里面的术语,和其他软件比如R里用到的可能不同,但原理都是相同的. min_ samples_split  定义了树中一个节点所需要用来分裂的最少样本数. 可以避免过度拟合(over-fitting).如果…
前几节介绍了下常用的函数和常踩的坑以及如何打包程序,现在来说下如何调参优化.当我们开发完一个项目,测试完成后,就要提交到服务器上运行,但运行不稳定,老是抛出如下异常,这就很纳闷了呀,明明测试上没问题,咋一到线上就出bug了呢!别急,我们来看下这bug到底怎么回事~ 一.错误分析 1.参数设置及异常信息 18/10/08 16:23:51 WARN TransportChannelHandler: Exception in connection from /10.200.2.95:40888 ja…
GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大的时候可以使用一个快速调优的方法——坐标下降.它其实是一种贪心算法:拿当前对模型影响最大的参数调优,直到最优化:再拿下一个影响最大的参数调优,如此下去,直到所有的参数调整完毕.这个方法的缺点就是可能会调到局部最优而不是全局最优,但是省时间省力,巨大的优势面前,还是试一试吧,后续可以再拿bagging…
欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share # -*- coding: utf-8 -*- """ Created on…
 1. 我们为什么需要推荐系统?“推荐”可是个当红话题.Netflix愿意用百万美金召求最佳的电影推荐算法,Facebook也为了登陆时的推荐服务开发了上百个项目,遑论现在市场上各式各样的应用都需要个性化服务.“从互联网中提取信息犹如用消防栓饮水”(Mitchell Kapor).如今的信息量早已过载,要依据如此嘈杂的信息做出正确决定显然是艰难的.这也是为什么推荐系统日渐流行,尤其在像Netflix, Amazon, Echo,和Facebook这类需要个性化服务的产品. 在大数据时代,实时推荐…
能来看我这篇博客的朋友,想必大家都知道,Weka采用Java编写的,因此,具有Java“一次编译,到处运行”的特性.支持的操作系统有Windows x86.Windows x64.Mac OS X.Linux等.这里不多赘述.  Weka系统安装一共分为: 1.安装Weka所需系统要求 下表,列举了运行Weka的特定版本对Java版本的要求. Java 1.4 1.5 1.6 Weka <3.4.0 X X X 3.4.x X X X 3.5.x 3.5.0-3.5.2 >3.5.2 r289…
转自:https://www.zhihu.com/question/25097993 我和@杨军类似, 也是半路出家. 现在的工作内容主要就是使用CNN做CV任务. 干调参这种活也有两年时间了. 我的回答可能更多的还是侧重工业应用, 技术上只限制在CNN这块. 先说下我的观点, 调参就是trial-and-error. 没有其他捷径可以走. 唯一的区别是有些人盲目的尝试, 有些人思考后再尝试. 快速尝试, 快速纠错这是调参的关键. 看了杨军的回答. 对于这个回答, 下面的评论里面 @纪秋佳 说的…
转载:调参是个头疼的事情,Yann LeCun.Yoshua Bengio和Geoffrey Hinton这些大牛为什么能够跳出各种牛逼的网络? 下面一些推荐的书和文章:调参资料总结Neural Network: Trick of the Trade Neural Networks: Tricks of the Trade Practical Recommendations for Gradient-based Training of Deep Architectures http://arxi…
//2019.08.02下午#机器学习算法中的超参数与模型参数1.超参数:是指机器学习算法运行之前需要指定的参数,是指对于不同机器学习算法属性的决定参数.通常来说,人们所说的调参就是指调节超参数.2.模型参数:是指算法在使用过程中需要学习得到的参数,即输入与输出之间映射函数中的参数,它需要通过对于训练数据集训练之后才可以得到.3.对于KNN算法,它是没有模型参数的,它的k参数就属于典型的超参数. 4.好的超参数的选择主要取决于三个方面:(1)领域知识(2)经验数值(3)实验搜索5.K近邻算法常用…
16年的时候花了一些时间整理了一些关于jvm的介绍文章,到现在回顾起来还是一些还没有补充全面,其中就包括如何利用工具来监控调优前后的性能变化.工具做为图形化界面来展示更能直观的发现问题,另一方面一些耗费性能的分析(dump文件分析)一般也不会在生产直接分析,往往dump下来的文件达1G左右,人工分析效率较低,因此利用工具来分析jvm相关问题,长长可以到达事半功倍的效果来. jvm监控分析工具一般分为两类,一种是jdk自带的工具,一种是第三方的分析工具.jdk自带工具一般在jdk bin目录下面,…
hyperopt自动调参 在传统机器学习和深度学习领域经常需要调参,调参有些是通过通过对数据和算法的理解进行的,这当然是上上策,但还有相当一部分属于"黑盒" hyperopt可以帮助我们做很多索然无味的调参工作 示例 直接看代码以及注释比较直接,下面通过一个随机森林可以感受一下: # coding=utf-8 from sklearn import datasets from sklearn.ensemble import RandomForestClassifier from skl…
欢迎关注博主主页,学习python视频资源 https://blog.csdn.net/q383700092/article/details/53763328 调参后结果非常理想 from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_breast_cancer from xgboost import XGBClassifier from sklearn.model_selection…