本文原作者“ manong”,原创发表于segmentfault,原文链接:segmentfault.com/a/1190000006158186 1.引言   MySQL作为开源技术的代表作之一,是互联网得以广泛流行的重要基础技术之一. 国外 GitHub.Airbnb.Yelp.Coursera 均在使用 MySQL 数据库,国内阿里巴巴.去哪儿网.腾讯.魅族.京东等等的部分关键业务同样使用了 MySQL 数据库.同时,MySQL 也是众多数据库排行榜单的第一名,丛多国内一线互联网企业都在用…
当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部署.运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的.而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量: 字段 1.尽量使用TINYINT.SMALLINT.MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED 2.VARC…
一则清理MySQL大表以释放磁盘空间的案例 一.基本情况: 1.dbtest库554G,先清理st_online_time_away_ds(37G)表的数据,保留半年的数据: 1)删除的数据:select count(1),tdate from dbtest.st_online_time_away_ds where tdate < '2017-08-01';(记录数为:462171894) 2)保留的数据:select count(1),tdate from dbtest.st_online_t…
摘要:MySQL JDBC抽取到底应该采用什么样的方式,且听小编给你娓娓道来. 小编最近在云上的一个迁移项目中被MySQL抽取模式折磨的很惨.一开始爆内存被客户怼,再后来迁移效率低下再被怼.MySQL JDBC抽取到底应该采用什么样的方式,且听小编给你娓娓道来. Java-JDBC通信原理 JDBC与数据库之间的通信是通过socket完,大致流程如下图所示.Mysql Server ->内核Socket Buffer -> 客户端Socket Buffer ->JDBC所在的JVM JD…
由于某个临时需求,需要给在线MySQL的某个超过千万的表增加一个字段.此表在设计之时完全按照需求实现,并没有多余的保留字段. 我们知道在MySQL中如果要执行ALTER TABLE操作,MySQL会通过制作原来表的一个临时副本来工作.对于表结构的修改在副本上施行,然后将新表替换原始表,此时会产生锁表,用户可以从原始表读取数据,而用户的更新和写入操作都会被lock,待新表准备好后写入新表.这对于在线的数据量较大的表来说是绝对无法容忍的,并且由于这种在线操作时间会很长,此时如果show proces…
一个朋友问我在线对大表进行ddl操作,如何做能尽量避免主从延迟以及不影响在线dml操作呢?我想到一个开源的pt-online-schema-change工具,测试了吧,效果还可以. pt-online-schema-change原理 1.如果存在外键,根据alter-foreign-keys-method参数的值,检测外键相关的表,做相应设置的处理. 2.创建一个新的表,表结构为修改后的数据表,用于从源数据表向新表中导入数据. 3.创建触发器,用于记录从拷贝数据开始之后,对源数据表继续进行数据修…
当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部署.运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的.而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量: 字段 尽量使用TINYINT.SMALLINT.MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED VARCHAR的…
当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部署.运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的.而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量: 字段 尽量使用TINYINT.SMALLINT.MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED VARCHAR的…
转:https://segmentfault.com/a/1190000006158186?hmsr=toutiao.io&utm_medium=toutiao.io&utm_source=toutiao.io 当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部署.运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的.而事实上很多时…
当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部署.运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的.而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量: 字段 尽量使用TINYINT.SMALLINT.MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED VARCHAR的…