算法仅仅要懂原理了,代码都是小问题,先看以下理论,尤其是红色标注的(要源代码请留下邮箱,有測试用例,直接执行就可以) A*算法 百度上的解释: A*[1](A-Star)算法是一种静态路网中求解最短路最有效的直接搜索方法. 公式表示为: f(n)=g(n)+h(n), 当中 f(n) 是从初始点经由节点n到目标点的估价函数, g(n) 是在状态空间中从初始节点到n节点的实际代价, h(n) 是从n到目标节点最佳路径的预计代价. 保证找到最短路径(最优解的)条件,关键在于估价函数f(n)的选取:…
目录 第二章:排序算法 及其他 Java代码实现 插入排序 归并排序 选择排序算法 冒泡排序 查找算法 习题 2.3.7 第二章:排序算法 及其他 Java代码实现 --算法导论(Introduction to Algorithms, Third Edition) 插入排序 //打印输出数组模块 public class PrintArrays { public static void printA(int []A) { for (int aInput : A) { System.out.pri…
学习记录: 一致性Hash算法原理及java实现:https://blog.csdn.net/suifeng629/article/details/81567777 一致性Hash算法介绍,原理,及使用场景:https://blog.csdn.net/cbmljs/article/details/88021598 纯转载,侵删…
OUTLINE 前言 预备知识预警 什么是column generation 相关概念科普 Cutting Stock Problem CG求解Cutting Stock Problem 列生成代码 reference 00 前言 这几天勤奋的小编一直在精确算法的快乐学习之中不能自拔.到列生成算法这一块,看了好几天总算把这块硬骨头给啃下来了.然后发现网上关于列生成的教学资料也不是很多,大部分讲的不是那么通俗易懂.所以今天就打算写一写这个算法,尽可能写得通俗易懂. 01 预备知识预警 由于列生成算…
转载注明出处: http://blog.csdn.net/cutesource/article/details/5904501 JVM工作原理和特点主要是指操作系统装入JVM是通过jdk中Java.exe来完成,通过下面4步来完成JVM环境. 1.创建JVM装载环境和配置 2.装载JVM.dll 3.初始化JVM.dll并挂界到JNIENV(JNI调用接口)实例 4.调用JNIEnv实例装载并处理class类. 在我们运行和调试Java程序的时候,经常会提到一个JVM的概念.JVM是Java程序…
短网址(Short URL),顾名思义就是在形式上比较短的网址.通常用的是asp或者php转向,在Web 2.0的今天,不得不说,这是一个潮流.目前已经有许多类似服务,借助短网址您可以用简短的网址替代原来冗长的网址,让使用者可以更容易的分享链接. 例如:http://t.cn/SzjPjA 短网址服务,可能很多朋友都已经不再陌生,现在大部分微博.手机邮件提醒等地方已经有很多应用模式了,并占据了一定的市场.估计很多朋友现在也正在使用.         看过新浪的短连接服务,发现后面主要有6个字符串…
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
前言 本文介绍机器学习分类算法中的K-近邻算法并给出伪代码与Python代码实现. 算法原理 首先获取训练集中与目标对象距离最近的k个对象,然后再获取这k个对象的分类标签,求出其中出现频数最大的标签. 而这个标签,就是分类的结果. 伪代码 对训练集做以下操作: 1. 计算训练集中各点与当前点之间的距离(本文采用最经典的欧式距离) 2. 按照距离递增次序对各点排序 3. 选取与当前点距离最小的k个点 4. 确定前k个点所在类别的出现频率 5. 返回前k个点出现频率最高的类别,即为分类结果. 特别说…
一.一致性Hash算法原理 基本概念 一致性哈希将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),整个哈希空间环如下: 整个空间按顺时针方向组织.0和232-1在零点中方向重合. 下一步将各个服务器使用Hash进行一个哈希,具体可以选择服务器的ip或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置,这里假设将上文中四台服务器使用ip地址哈希后在环空间的位置如下: 接下来使用如下算法定位数据访问到相应服务器:将数据…
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
前言 前面两节内容我们详细介绍了ArrayList,一是手写实现ArrayList数据结构,而是通过分析ArrayList源码看看内置实现,关于集合内容一如既往,本节课我们继续学习集合LinkedList,我们首先入门LinkedList数据结构,然后再去看看LinkedList源码是如何实现的,我们开始吧. LinkedList入门 LinkedList内置是通过双链表数据结构来存储数据,和ArrayList不同的是,ArrayList属于真正意义物理意义上的线性结构,而LinkedList也…
简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 简单的说就是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包.Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2). 解决最短…
1,对于待存储的海量数据,如何将它们分配到各个机器中去?---数据分片与路由 当数据量很大时,通过改善单机硬件资源的纵向扩充方式来存储数据变得越来越不适用,而通过增加机器数目来获得水平横向扩展的方式则越来越流行.因此,就有个问题,如何将这些海量的数据分配到各个机器中?数据分布到各个机器存储之后,又如何进行查找?这里主要记录一致性Hash算法如何将数据分配到各个机器中去. 2,衡量一致性哈希算法好处的四个标准: ①平衡性:平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空…
0.算法概述 0.1 算法分类 十种常见排序算法可以分为两大类: 比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序. 非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序. 0.2 算法复杂度 0.3 相关概念 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面. 不稳定:如果a原本在b的前面,而a=b,排序之后 a 可能会出现在 b 的后面.…
 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用.        一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义:   1.平衡性(Balance):平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用.…
一.策略模式的定义 —— 定义了一组算法,将每个算法包装起来,并且使它们之间可以互换 —— 策略模式使这些算法在客户端调用它们的时候能够相互不影响的变化,改变不同算法的实现方式不影响客户端的使用,即策略模式让算法独立于使用它的客户端而独立变化. 策略模式在Java中处处可以体现,TreeSet和TreeMap中均存在这样的构造方法:TreeSet(Comparator<? super E> comparator)和TreeMap(Comparator<? superK> compa…
前言 在入学时,学校为我们每位童鞋建立一个档案信息,当然每个档案信息都对应档案编号,还有比如在学校图书馆,图书馆为每本书都编了唯一的一个书籍号,那么问题来了,当我们需要通过档案号快速查到对应档案信息或者通过书记号快速查到对应书籍,这个时候我们可以通过哪种数据结构呢?前面几节我们详细讲解了ArrayList和LinkedList,我们知道ArrayList底层就是一维数组,但是我们事先不知道在数组中的索引,此时查询到对应档案编号或书籍号需要循环遍历,这个时候时间复杂度肯定不是O(1),即使我们知道…
目录 数组 sort() 方法 冒泡排序 选择排序 插入排序 希尔排序 归并排序 堆排序 快速排序 创建时间:2020-08-07 本文只是将作者学习的过程以及算法理解进行简单的分享,提供多一个角度的理解说明,或许让你的困惑能得以解决(代码或说明若有问题,欢迎留言.联系更正!以免造成更多困惑) 如果要更深入研究这些算法的同学,社区中同类型更优秀,单个算法更深入剖析的文章也是比比皆是,这里或许作为一个常见排序算法入门学习了解更准确 排序名称 最快时间 最慢时间 空间复杂度 冒泡排序 O(n) O(…
前言 想必大家都听过数据挖掘领域那个经典的故事 - "啤酒与尿布" 的故事. 那么,具体是怎么从海量销售信息中挖掘出啤酒和尿布之间的关系呢? 这就是关联分析所要完成的任务了. 本文将讲解关联分析领域中最为经典的Apriori算法,并给出具体的代码实现. 关联分析领域的一些概念 1. 频繁项集: 数据集中经常出现在一起的物品的集合.例如 "啤酒和尿布" 2. 关联规则: 指两个物品集之间可能存在很强的关系.例如 "{啤酒} -> {尿布}"…
继上两篇文章介绍聚类中基于划分思想的k-means算法和k-mediod算法 本文将继续介绍另外一种基于划分思想的k-mediod算法-----clara算法 clara算法可以说是对k-mediod算法的一种改进,就如同k-mediod算法对k-means算法的改进一样. clara(clustering large application)算法是应用于大规模数据的聚类.而其核心算法还是利用k-mediod算法. 只是这种算法弥补了k-mediod算法只能应用于小规模数据的缺陷. clara算…
kNN(k-nearest neighbor algorithm)算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.简单地说,K-近邻算法采用测量不同特征值之间的距离方法进行分类. - 优点:精度高.对异常值不敏感.无数据输入假定. - 缺点:计算复杂度高.空间复杂度高. - 适用数据范围:数值型和标称型. 举个简单的例子,一群男生和一群女生,我们知道他们的身高和性别. 如下表格: 身高 性别 165 女 16…
前言 想必大家都听过数据挖掘领域那个经典的故事 - "啤酒与尿布" 的故事. 那么,具体是怎么从海量销售信息中挖掘出啤酒和尿布之间的关系呢? 这就是关联分析所要完成的任务了. 本文将讲解关联分析领域中最为经典的Apriori算法,并给出具体的代码实现. 关联分析领域的一些概念 1. 频繁项集: 数据集中经常出现在一起的物品的集合.例如 "啤酒和尿布" 2. 关联规则: 指两个物品集之间可能存在很强的关系.例如 "{啤酒} -> {尿布}"…
这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解. 第一步.随机生成质心 由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给定两个质心,我们这个算法的目的就是将这一堆点根据它们自身的坐标特征分为两类,因此选取了两个质心,什么时候这一堆点能够根据这两个质心分为两堆就对了.如下图所示: 第二步.根据距离进行分类 红色和蓝色的点代表了我们随机选取的质心.既然我们要让这一堆点的分为两堆,且让分好的每一堆点离其质心最近的话,我们首…
直接上干活 /** * @version 1.0.0 * @@menu <p> * @date 2020/11/17 16:28 */ public class LoadBlance { static Map<String, Integer> serverWeightMap = new HashMap<>(); static { serverWeightMap.put("192.168.1.100", 1); serverWeightMap.put(…
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
基本思想: 在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒.即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换. 冒泡排序的示例: 算法实现 /** * * @author zhangtao */ public class BubbleSort { public static void main(String[] args) { int arr[]={3,1,5,7,2,4,9,6,45,0,-1}…
概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 我们这里说说八大排序就是内部排序. 当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序.堆排序或归并排序序. 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短: 1.插入排序—直接插入排序(Straight Insertion Sort) 基本思想: 将一个记录插入到…
原文链接:http://ju.outofmemory.cn/entry/372908…
声明:图片及内容基于:https://www.bilibili.com/video/BV16C4y1H7Zc?from=articleDetail 最短路径 Dijkstra算法 原理 数据结构 核心代码 findMinDist() int MGraph::findMinDist(){ int length=INFINIT; for(int i=0;i<vertexNum;i++){ if(s[i]==0){ if(length>dist[i]&&dist[i]!=0&…