W phase 学习】的更多相关文章

W phase 的组成:(相关文献发现W phase适用于6级以上的地震) P, PP,S,SS,SP,PS等等长周期的震相: 它的传播机制和whispering gallery 相似. 从简振理论来说,它表示一群higher-mode 瑞利波,而它们的群速度接近但比P波的群速度慢. 典型的地震波图在体波震相上展示出明显的短周期(最大不超过30s),接下来跟着的长周期(一般是10s-250s)的面波. 需要注意的是:由于体波和面波源于同一个震源,地震波的体波部分一定包含长周期的能量.然而,由于正…
实际开始看这一章节的时候,觉得都不想看了,因为每种语言都会有控制流,感觉好像我不看就会了似的.快速预览的时候,发现了原来还包含了对函数定义的一些描述,重点讲了3种函数形参的定义方法,章节的最后讲述了PEP8的一些重要的规范,在学习的过程中还是学到了些知识. 2.1  if 语句 if语句就不多说了,经常跟else if .. 和 else ..一起使用,如下所示: >>> x = int(raw_input("Please enter an integer: "))…
交叉熵 交叉熵是用于解决使用二次代价函数时当单个神经元接近饱和的时候对权重和bias权重学习的影响.这个公式可以看出,当神经元饱和的时候,sigma的偏导接近于0,w的学习也会变小.但是应用交叉熵作为代价函数的话,只有当所有的神经元接近0或者1的时候才会出现这种情况.它解决了初始化w和bias时坏的w和bias带来的影响. 交叉熵对w求偏导: ,,,,有  最后得出: 由该公式可以看出,只有大部分样例的输出接近期望值时,w的学习才会变缓.bias同理. 上面的讨论只针对有一个神经元的网络. 如果…
深度学习(二)--深度信念网络(Deep Belief Network,DBN) 一.受限玻尔兹曼机(Restricted Boltzmann Machine,RBM) 在介绍深度信念网络之前需要先了解一下受限玻尔兹曼机:受限玻尔兹曼机(英语:restricted Boltzmann machine,RBM)是一种可通过输入数据集学习概率分布的随机生成神经网络.RBM最初由发明者保罗·斯模棱斯基(PaulSmolensky)于1986年命名为簧风琴(Harmonium),但直到杰弗里·辛顿及其合…
一.介绍 在传统的分类模型中,为了解决多分类问题(例如三个类别:猫.狗和猪),就需要提供大量的猫.狗和猪的图片用以模型训练,然后给定一张新的图片,就能判定属于猫.狗或猪的其中哪一类.但是对于之前训练图片未出现的类别(例如牛),这个模型便无法将牛识别出来,而ZSL就是为了解决这种问题.在ZSL中,某一类别在训练样本中未出现,但是我们知道这个类别的特征,然后通过语料知识库,便可以将这个类别识别出来. zero-shot learning的一个重要理论基础就是利用高维语义特征代替样本的低维特征,使得训…
1.卷积核的概念,卷积核的size,就是滑动窗口的大小,例如原始数据为28*28的手写数字,滑动窗口size为5*5,则卷积核的size为5*5.卷积核就是权重集合,就是5*5+1.1表示偏置项.卷积核就是输入层的25个点+1个偏置项,链接卷积层的一个点后的权重值集合W. 2.feature map 就是通过卷积以后,计算的输出的神经元值的集合,比如输入28*28的手写数字,经过5*5的卷积核卷积,通过sigmod的函数计算得到的输出神经元的值的集合24*24就是一个feature map,由于…
Momenta详解ImageNet 2017夺冠架构SENet 转自机器之心专栏 作者:胡杰 本届 CVPR 2017大会上出现了很多值得关注的精彩论文,国内自动驾驶创业公司 Momenta 联合机器之心推出 CVPR 2017 精彩论文解读专栏.除此之外,Momenta 还受邀在 CVPR 2017 的 ImageNet Workshop 中发表演讲,介绍 Momenta 在ImageNet 2017 挑战赛中夺冠的网络架构SENet.本文作者为 Momenta 高级研发工程师胡杰. 我是 M…
1. Abstract 本文旨在简单介绍下各种轻量级网络,纳尼?!好吧,不限于轻量级 2. Introduction 2.1 Inception 在最初的版本 Inception/GoogleNet,其核心思想是利用多尺寸卷积核去观察输入数据.举个栗子,我们看某个景象由于远近不同,同一个物体的大小也会有所不同,那么不同尺度的卷积核观察的特征就会有这样的效果.于是就有了如下的网络结构图: 图1: Inception module, naive version 于是我们的网络就变胖了,通过增加网络的…
完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和SENet论文,捋一遍SENet,基本代码和图片都是来自网络,这里表示感谢,参考链接均在后文.下面开始. SENet论文写的很好,有想法的可以去看一下,我这里提供翻译地址: 深度学习论文翻译解析(十六):Squeeze-and-Excitation Networks 在深度学习领域,CNN分类网络的发展…
http://www.cnblogs.com/wengzilin/archive/2013/04/24/3041019.html 学 习是神经网络一种最重要也最令人注目的特点.在神经网络的发展进程中,学习算法的研究有着十分重要的地位.目前,人们所提出的神经网络模型都是和学习算 法相应的.所以,有时人们并不去祈求对模型和算法进行严格的定义或区分.有的模型可以有多种算法.而有的算法可能可用于多种模型.不过,有时人们也称算法 为模型. 自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学…