1.卷积核的概念,卷积核的size,就是滑动窗口的大小,例如原始数据为28*28的手写数字,滑动窗口size为5*5,则卷积核的size为5*5.卷积核就是权重集合,就是5*5+1.1表示偏置项.卷积核就是输入层的25个点+1个偏置项,链接卷积层的一个点后的权重值集合W. 2.feature map 就是通过卷积以后,计算的输出的神经元值的集合,比如输入28*28的手写数字,经过5*5的卷积核卷积,通过sigmod的函数计算得到的输出神经元的值的集合24*24就是一个feature map,由于…