从Encoder到Decoder实现Seq2Seq模型】的更多相关文章

https://zhuanlan.zhihu.com/p/27608348 更新:感谢@Gang He指出的代码错误.get_batches函数中第15行与第19行,代码已经重新修改,GitHub已更新. 前言 好久没有更新专栏,今天我们来看一个简单的Seq2Seq实现,我们将使用TensorFlow来实现一个基础版本的Seq2Seq,主要帮助理解Seq2Seq中的基础架构. 最基础的Seq2Seq模型包含了三个部分,即Encoder.Decoder以及连接两者的中间状态向量,Encoder通过…
from : https://caicai.science/2018/10/06/attention%E6%80%BB%E8%A7%88/ 一.Seq2Seq 模型 1. 简介 Sequence-to-sequence (seq2seq) 模型,顾名思义,其输入是一个序列,输出也是一个序列,例如输入是英文句子,输出则是翻译的中文.seq2seq 可以用在很多方面:机器翻译.QA 系统.文档摘要生成.Image Captioning (图片描述生成器). 2. 基本框架 第一种结构 [参考1]论文…
神经网络.<Make Your Own Neural Network>,用非常通俗易懂描述讲解人工神经网络原理用代码实现,试验效果非常好. 循环神经网络和LSTM.Christopher Olah http://colah.github.io/posts/2015-08-Understanding-LSTMs/ . seq2seq模型基于循环神经网络序列到序列模型,语言翻译.自动问答等序列到序列场景,都可用seq2seq模型,用seq2seq实现聊天机器人的原理 http://suriyade…
一.seq2seq架构图 seq2seq模型左边绿色的部分我们称之为encoder,左边的循环输入最终生成一个固定向量作为右侧的输入,右边紫色的部分我们称之为decoder.单看右侧这个结构跟我们之前学习的语言模型非常相似,如下: 唯一不同的是,语言模型的输入a<0>是一个零向量,而seq2seq模型decoder部分的输入是由encoder编码得到的一个固定向量.所以可以称seq2seq模型为条件语言模型p(y|x). 语言模型生成的序列y是可以随机生成的,而seq2seq模型用于到机器翻译…
本文内容: 什么是seq2seq模型 Encoder-Decoder结构 常用的四种结构 带attention的seq2seq 模型的输出 seq2seq简单序列生成实现代码 一.什么是seq2seq模型 seq2seq全称为:sequence to sequence ,是2014年被提出来的一种Encoder-Decoder结构.其中Encoder是一个RNN结构(LSTM.GRU.RNN等). 主要思想是输入一个序列,通过encoder编码成一个语义向量c(context),然后decode…
from:https://baijiahao.baidu.com/s?id=1584177164196579663&wfr=spider&for=pc seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型是根据输入序列X来生成输出序列Y,在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上有着广泛的运用.以encode和decode为代表的seq2seq模型,encode意思是将输入序列转化成一个固定长度的向量,decode意思是将输入…
一,概述 在自然语言生成的任务中,大部分是基于seq2seq模型实现的(除此之外,还有语言模型,GAN等也能做文本生成),例如生成式对话,机器翻译,文本摘要等等,seq2seq模型是由encoder,decoder两部分组成的,其标准结构如下: 原则上encoder,decoder可以由CNN,RNN,Transformer三种结构中的任意一种组合.但实际的应用过程中,encoder,decnoder的结构选择基本是一样的(即encoder选择CNN,decoder也选择CNN,如faceboo…
以下代码可以让你更加熟悉seq2seq模型机制 """ test """ import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable # 创建字典 seq_data = [['man', 'women'], ['black', 'white'], ['king', 'que…
Seq2Seq模型 传统的机器翻译的方法往往是基于单词与短语的统计,以及复杂的语法结构来完成的.基于序列的方式,可以看成两步,分别是 Encoder 与 Decoder,Encoder 阶段就是将输入的单词序列(单词向量)变成上下文向量,然后 decoder根据这个向量来预测翻译的结果. encoder 阶段 encoder 阶段面临的一个问题是,对于输入语句,语句的长度往往是不固定的,但是我们训练神经网络往往都是要固定长度的向量.所以如何解决这个问题是 encoder阶段的关键.我们通常使用多…
Seq2Seq模型 基本原理 核心思想:将一个作为输入的序列映射为一个作为输出的序列 编码输入 解码输出 解码第一步,解码器进入编码器的最终状态,生成第一个输出 以后解码器读入上一步的输出,生成当前步输出 组成部件: Encoder Decoder 连接两者的固定大小的State Vector 解码方法 最核心部分,大部分的改进 贪心法 选取一种度量标准后,在当前状态下选择最佳的一个结果,直到结束 计算代价低 局部最优解 集束搜索(Beam Search) 启发式算法 保存beam size个当…