最近由于项目需要,要对tensorflow构造的模型中部分变量冻结,然后继续训练,因此研究了一下tf中冻结变量的方法,目前找到三种,各有优缺点,记录如下: 1.名词解释 冻结变量,指的是在训练模型时,对某些可训练变量不更新,即仅参与前向loss计算,不参与后向传播,一般用于模型的finetuning等场景.例如:我们在其他数据上训练了一个resnet152模型,然后希望在目前数据上做finetuning,一般来讲,网络的前几层卷积是用来提取底层图像特征的,因此可以对前3个卷积层进行冻结,不改变其…