AndrewNG Deep learning课程笔记 - RNN】的更多相关文章

The Unreasonable Effectiveness of Recurrent Neural Networks,http://karpathy.github.io/2015/05/21/rnn-effectiveness/ https://www.csdn.net/article/2015-08-28/2825569 RNN基础 rnn是的输入和输出都是序列,如图 所以rnn可以认为是用于学习序列和序列之间的匹配关系 如何用符号表示 X,Y表示输入,输出 <t>,表示序列中序号 (i)…
参考, An Intuitive Explanation of Convolutional Neural Networks http://www.hackcv.com/index.php/archives/104/?hmsr=toutiao.io&utm_medium=toutiao.io&utm_source=toutiao.io CNN基础 CNN网络主要用于compute vision 对于图片输入而言,是一种极高维度的数据,比如分辨率1000*1000*3的图,可能会产生3 bil…
神经网络基础 Deep learning就是深层神经网络 神经网络的结构如下, 这是两层神经网络,输入层一般不算在内,分别是hidden layer和output layer hidden layer中的一个神经元的结构如下, 可以看出这里的神经元结构等同于一个逻辑回归单元,神经元都是由线性部分和非线性部分组成 非线性部分,又称为激活函数,这里用的是sigmod,也可以用其他,比如relu或tanh 为什么要用激活函数? 因为既然要用神经网络去拟合任意function,光用线性拟合是不行的,因为…
第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中,不可能从一开始就准确预测出一些信息和其他超级参数,例如:神经网络分多少层:每层含有多少个隐藏单元:学习速率是多少:各层采用哪些激活函数.应用型机器学习是一个高度迭代的过程. 从一个领域或者应用领域得来的直觉经验,通常无法转移到其他应用领域,最佳决策取决于 所拥有的数据量,计算机配置中输入特征的数量,…
1. 深层神经网络(Deep L-layer neural network ) 2. 前向传播和反向传播(Forward and backward propagation) 3. 总结 4. 深层网络中的前向传播(Forward propagation in a Deep Network) 向量化实现过程可以写成: 注:这里只能用一个显示for循环,l 从 1 到 L,然后一层接着一层去计算. 如何减少bug 4.1 核对矩阵的维数(Getting your matrix dimensions…
总结 一.处理数据 1.1 向量化(vectorization) (height, width, 3) ===> 展开shape为(heigh*width*3, m)的向量 1.2 特征归一化(Normalization) 一般数据,使用标准化(Standardlization), z(i) = (x(i) - mean) / delta,mean与delta代表X的均值和标准差,最终特征处于[-1,1]区间 对于图片,可直接使用 Min-Max Scaliing,即将每个特征直接除以 255,…
3.1 神经网络概述(Neural Network Overview ) (神经网络中,我们要反复计算a和z,最终得到最后的loss function) 3.2 神经网络的表示(Neural Network Representation) 3.3 计算一个神经网络的输出(Computing a Neural Network's output ) 向量化计算: 详细过程见下: 公式 3.10: (W---4x3) 3.4 多样本向量化(Vectorizing across multiple exa…
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正…
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…
Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不…