SPOJ FFT TSUM】的更多相关文章

第一道FFT的题目. 在网上找了很多FFT的资料,但一直都看不懂,最后是看算法导论学的FFT,算法导论上面写的很详细,每一步推导过程都有严格的证明. 下面说这道题 题意: 给一个序列s,有n个不互相同的整数.现在从这个序列中选出一个包含3个不同的整数的集合,对于他们的和为sum来说,求一共有多少种选法.(注意:3个数的先后顺序都看做一种选法) 分析: 构造一个多项式A(x),这n个数作为多项式的指数. A3(x)中的每一项的指数对应三个数的和,前面的系数是取数的方案数. 然而这并不是题目所求,这…
题目 Source http://www.spoj.com/problems/TSUM/ Description You're given a sequence s of N distinct integers.Consider all the possible sums of three integers from the sequence at three different indicies.For each obtainable sum output the number of diff…
题目链接 首先忽略 i < j < k这个条件.那么我们构造多项式$$A(x) = \sum_{1现在我们考虑容斥:1. $ (\sum_{}x)^3 = \sum_{}x^3 + 3\sum_{}x^2 y + 6\sum_{}xyz $ 2. $ (\sum_{}x^2)(\sum_{}x) = \sum_{}x^3 + \sum_{}x^2 y $3. $ (\sum_{}x)^3 = \sum_{}x^3 $由上面三个式子 我们可以推导出$ \sum_{}xyz = \frac {(\…
题意:n个数,任取三个加起来,问每个可能的结果的方案数. 题解:构造母函数ABC,比如现在有 1 2 3 三个数.则 其中B表示同一个数加两次,C表示用三次.然后考虑去重. A^3表示可重复地拿三个.(无顺序) 然后我们去掉拿了两个相同的方案A*B,由于有三种顺序(xxy,xyx,yxx) 所以*3 最后再加上多减了的 拿三个相同的的方案C,一共减了三次,多减了两次所以*2 最后除以3*2*1去掉顺序 然后fft即可 坑:数据有负数,所以读入需要+2e4预处理trk,最后减去6e4,因为每一项都…
SPOJ - VFMUL:https://vjudge.net/problem/SPOJ-VFMUL 这是一道FFT求高精度的模板题. 参考:https://www.cnblogs.com/RabbitHu/p/FFT.html #include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include &l…
题意:求两个数相乘. 第一次写非递归的fft,因为一个数组开小了调了两天TAT. #include<iostream> #include<cstring> #include<algorithm> #include<cstdio> #include<cmath> using namespace std; #define PI 3.1415926535897932384 #define MAXN 1200000 #pragma optimize(&q…
传送门 这次fftfftfft乱搞居然没有被卡常? 题目简述:给你nnn个数,每三个数ai,aj,ak(i<j<k)a_i,a_j,a_k(i<j<k)ai​,aj​,ak​(i<j<k)组成的所有和以及这些和出现的次数. 读完题直接让我联想到了昨天写过的一道用fftfftfft优化点分治合并的题 ,这不是差不多嘛? 只是这一次的容斥要麻烦一些. 我们令原数列转化成的系数序列为{an}\{a_n\}{an​} 那么如果允许重复答案就应该是an3a_n^3an3​ 然后展…
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <complex> # include <set> # includ…
You're given a sequence s of N distinct integers.Consider all the possible sums of three integers from the sequence at three different indicies.For each obtainable sum output the number of different triples of indicies that generate it.Constraints:N…
题目链接:MAXMATCH - Maximum Self-Matching Description You're given a string s consisting of letters 'a', 'b' and 'c'. The matching function \(m_s( i )\) is defined as the number of matching characters of s and its i-shift. In other words, \(m_s( i )\) is…
题目链接:VFMUL - Very Fast Multiplication Description Multiply the given numbers. Input n [the number of multiplications <= 101] l1 l2 [numbers to multiply (at most 300000 decimal digits each)] Text grouped in [ ] does not appear in the input file. Outpu…
主席树/树状数组.给一个区间,多次询问[l,r]内有多少个不重复的元素.每个前缀都建线段树,询问直接r的[l,r]就可以了.(似乎对主席树有一点了解了?...话说spoj好高级的样子... #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; #define REP(i,s,t) for(int i=s;i<=t;i+…
对32K*32K的随机数矩阵进行FFT变换,数的格式是32位浮点数.将产生的数据存放在堆上,对每一行数据进行N=32K的FFT,记录32K次fft的时间. 比较串行for循环和并行for循环的运行时间. //并行计算//调用openmp,通过g++ -fopenmp test.cpp -o out 编译程序#pragma omp parallel for ;i<LEN;i++) fft(num[i],LEN,); 最终的运行时间:247,844,013 us 而串行fft,不调用openmp,它…
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233[Submit][Status][Discuss] Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文. Input 第一…
2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2978  Solved: 1523[Submit][Status][Discuss] Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出一行,即x*y的结果. Sample Input 1 3 4 Sample Outpu…
应该这样来理解这个问题: 补0后的DFT(FFT是DFT的快速算法),实际上公式并没变,变化的只是频域项(如:补0前FFT计算得到的是m*2*pi/M处的频域值, 而补0后得到的是n*2*pi/N处的频域值), M为原DFT长度,N变成了补0后的长度.将(-pi,pi)从原来的M份变成了N份,如果将补0前后的这些频域值画在坐标上,其中m*2*pi/M和n*2*pi/N重合的部分,它所对应的频域值(变换后的值)是不变的,而在原来的M份里多了(N-M)份的分量,即在频域内多了(N-M)份插值,这样理…
算算劳资已经多久没学新算法了,又要重新开始学辣.直接扔板子,跑...话说FFT算法导论里讲的真不错,去看下就懂了. //FFT#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; typedef __int64 ll; const double pi = acos(-1.0); +; ; struct Complex {…
题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query is a pair (i, j) (1 ≤ i ≤ j ≤ n). For each d-query (i, j), you have to return the number of distinct elem…
题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: 一个块内直接枚举统计三个或两个在块内的. 只有一个在当前块我们假设它是中间那个,对左右其它块做卷积. 但是还是感觉复杂度有点玄学啊... 我比较傻逼...一开始块内统计根本没有想清楚...最后做卷积硬生生把复杂度变成了 $\sqrt{N}*N*log(N)$... 改了一个晚上终于没忍住看标程...…
Description: 上一篇blog. Solution: 同样我们可以用fft来做...就像上次写的那道3-idoit一样,对a做k次卷积就好了. 同样有许多需要注意的地方:我们只是判断可行性,所以为了保证精度如果f大于1就把它变成1; 对于长度也可以慢慢倍增,可以优化复杂度就是写起来麻烦. void change(complex y[],int len) { int i,j,k; for(i = 1, j = len/2;i < len-1; i++) { if(i < j)swap(…
数学相关一直都好弱啊>_< 窝这个月要补一补数学啦, 先从基础的fft补起吧! 现在做了 道. 窝的fft 模板 (bzoj 2179) #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #define MAXN 200005 #define PI M_PI using namespace std…
首先对于FFT来说,输入的信号是一个按一定采样频率获得的信号序列,而输出是每个采样点对应的频率的幅度(能量). 下面详细分析: 在FFT的输出数据中,第一个值是直流分量的振幅(这样对应周期有无穷的可能性),而第2个对应第一个采样点,第3个对应第二个...第n个对应第n-1个采样点.而且这些采样点是有对称的关系的,即:X(i) = X(n-i).所以只需要关注前N/2个采样点就可以了,而每个采样点与频率的关系有下面公式给出:Fn = (n-1)*Fs/N, Fs采样频率:Fn频率:n采样点:N采样…
前些日子,因为需要在STM32F103系列处理器上,对采集的音频信号进行FFT,所以花了一些时间来研究如何高效并精确的在STM32F103系列处理器上实现FFT.在网上找了很多这方面的资料做实验并进行比较,最终选择了使用STM32提供的DSP库这种方法. 本文将以一个实例来介绍如何使用STM32提供的DSP库函数进行FFT. 1.FFT运算效率 使用STM32官方提供的DSP库进行FFT,虽然在使用上有些不灵活(因为它是基4的FFT,所以FFT的点数必须是4^n),但其执行效率确实非常高效,看图…
SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50000) integers between -10000 and 10000. On this sequence you have to apply M (M <= 50000) operations: modify the i-th element in the sequence or for giv…

FFT

void FFT(complex a[],int n,int fl){ ,j=n/;i<n;i++){ if (i<j) {complex t=a[i];a[i]=a[j];a[j]=t;}; int k; );j&k;j^=k,k>>=); j^=k; } ;i<=n;i<<=){ complex w;w.r=cos(fl**pi/i);w.i=sin(fl**pi/i); ;j<n;j+=i){ complex wi;wi.r=;wi.i=; ;…
2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2923  Solved: 1498[Submit][Status][Discuss] Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出一行,即x*y的结果. Sample Input 1 3 4 Sample Outpu…
FFT实质上做的是循环卷积,ck=sigam(ai*bj,(i+j)%n=k),其中n是倍长后的长度,所以我们有时候需要的只是普通的卷积,我们就需要把原数组倍长,再用FFT求卷积,由于高位都是0,所以做出来就等价于普通的卷积.…
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; ); ; int n,len,m,rev[maxn],ans[maxn]; struct node{ double real,imag; node operator +(const node &x){retur…
关于按时间抽取快速傅里叶(FFT)的快速理论深度思考 对于FFT基本理论参考维基百科或百度百科. 首先谈谈FFT的快速何来?大家都知道FFT是对DFT的改进变换而来,那么它究竟怎样改进,它改进的思想在何处呢?明白后,深感奇妙,感悟学习,感悟生活,写下此文,供大家分享之.(文中FFT均讨论按时间抽取快速傅里叶(FFT)) 首先我们来一起看看变换公式,DFT ->FFT(整数 ->奇数 + 偶数) 我自己到这结束也没了解它是怎么把时间变少的,从O(N2)(DFT时间深度)到O(N log2 N)(…
转载自http://blog.jobbole.com/58246/ 快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.没有正规计算机科学课程背景的我,使用这个算法多年,但这周我却突然想起自己从没思考过为什么FFT能如此快速地计算离散傅里叶变换.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章中,以看似简单的计算技巧来讲解这个东西. 本文的目标是,深入Cooley-Tukey  FFT 算法,解释…