迁移学习算法之TrAdaBoost from: https://blog.csdn.net/Augster/article/details/53039489 TradaBoost算法由来已久,具体算法可以参考作者的原始文章,Boosting For Transfer Learning. 1.问题定义 传统的机器学习的模型都是建立在训练数据和测试数据服从相同的数据分布的基础上.典型的比如有监督学习,我们可以在训练数据上面训练得到一个分类器,用于测试数据.但是在许多的情况下,这种同分布的假设并不满足…
迁移学习研究综述 Sinno Jialin Pan and Qiang Yang,Fellow, IEEE 摘要: 在许多机器学习和数据挖掘算法中,一个重要的假设就是目前的训练数据和将来的训练数据,一定要在相同的特征空间并且具有相同的分布.然而,在许多现实的应用案例中,这个假设可能不会成立.比如,我们有时候在某个感兴趣的领域有个分类任务,但是我们只有另一个感兴趣领域的足够训练数据,并且后者的数据可能处于与之前领域不同的特征空间或者遵循不同的数据分布.这类情况下,如果知识的迁移做的成功,我们将…
附上代码加数据地址 https://github.com/Liuyubao/transfer-learning ,欢迎参考. 一.Inception-V3模型 1.1 详细了解模型可参考以下论文: [v1] Going Deeper with Convolutions, 6.67% test error http://arxiv.org/abs/1409.4842 [v2] Batch Normalization: Accelerating Deep Network Training by Re…
参考:登上<Cell>封面的AI医疗影像诊断系统:机器之心专访UCSD张康教授 Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning 2018-2-22 Cell 读<Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning> 没有问题就无法学习: 1. 文中的数据规模…
代码: # -*- coding: utf-8 -*- import random import gym import numpy as np from collections import deque from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam from keras.utils.vis_utils import plot_model EP…