迁移学习算法之TrAdaBoost from: https://blog.csdn.net/Augster/article/details/53039489 TradaBoost算法由来已久,具体算法可以参考作者的原始文章,Boosting For Transfer Learning. 1.问题定义 传统的机器学习的模型都是建立在训练数据和测试数据服从相同的数据分布的基础上.典型的比如有监督学习,我们可以在训练数据上面训练得到一个分类器,用于测试数据.但是在许多的情况下,这种同分布的假设并不满足…
PCA PCA(Principal Component Analysis,主成分分析)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的…
from:https://www.jiqizhixin.com/articles/2018-08-11-11 可以通过分析流量包来检测TOR流量.这项分析可以在TOR 节点上进行,也可以在客户端和入口节点之间进行.分析是在单个数据包流上完成的.每个数据包流构成一个元组,这个元组包括源地址.源端口.目标地址和目标端口. 提取不同时间间隔的网络流,并对其进行分析.G.He等人在他们的论文“从TOR加密流量中推断应用类型信息”中提取出突发的流量和方向,以创建HMM(Hidden Markov Mode…
迁移学习研究综述 Sinno Jialin Pan and Qiang Yang,Fellow, IEEE 摘要:   在许多机器学习和数据挖掘算法中,一个重要的假设就是目前的训练数据和将来的训练数据,一定要在相同的特征空间并且具有相同的分布.然而,在许多现实的应用案例中,这个假设可能不会成立.比如,我们有时候在某个感兴趣的领域有个分类任务,但是我们只有另一个感兴趣领域的足够训练数据,并且后者的数据可能处于与之前领域不同的特征空间或者遵循不同的数据分布.这类情况下,如果知识的迁移做的成功,我们将…
在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要对每个领域都标定大量训练数据,这将会耗费大量的人力与物力.而没有大量的标注数据,会使得很多与学习相关研究与应用无法开展…
原文地址:http://blog.csdn.net/miscclp/article/details/6339456 在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我 们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要…
机器学习策略-多任务学习 Learninig from multiple tasks 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.7 迁移学习 Transfer Learninig 神经网络可以从一个任务中习得知识,并将这些知识应用到另一个独立的任务中.例如:你已经训练好一个能够识别猫的系统,你利用这些知识或者这些知识的部分去完成更好的 阅读X射线扫描图. 这就是所谓的-- 迁移学习 how-to 假设你已经训练好一个图像识别神经网络,首先用一个神经网络,在(x,y)对上训练,其…
原文地址:http://blog.csdn.net/miscclp/article/details/6339456 在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我 们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要…
原文地址: https://www.jiqizhixin.com/articles/2017-06-02-2 =================================================================== PS: 视频在原文中. 第四范式首席科学家杨强:AlphaGo的弱点及迁移学习的应对(附视频) 5 月 27-28 日,机器之心在北京顺利主办了第一届全球机器智能峰会(GMIS 2017),来自美国.加拿大.欧洲,香港及国内的众多顶级专家分享了精彩的主题…
摘要:诸多关于人工智能的流行词汇萦绕在我们耳边,比如深度学习 (Deep Learning).强化学习 (Reinforcement Learning).迁移学习 (Transfer Learning),不少人对这些高频词汇的含义及其背后的关系感到困惑,今天就为大家理清它们之间的关系和区别. 一. 深度学习: 深度学习的成功和发展,得益于算力的显著提升和大数据,数字化后产生大量的数据,可通过大量的数据训练来发现数据的规律,从而实现基于监督学习的数据预测. 基于神经网络的深度学习主要应用于图像.文…
前情提示:Go语言学习者.本文参考https://labuladong.gitee.io/algo,代码自己参考抒写,若有不妥之处,感谢指正 关于golang算法文章,为了便于下载和整理,都已开源放在: https://github.com/honlu/GoLabuladongAlgorithm https://gitee.com/dreamzll/GoLabuladongAlgorithm 方便就请分享,star!备注转载地址!欢迎一起学习和交流! 链接参考: https://labulado…
1. 历史及演进 提升学习算法,又常常被称为Boosting,其主要思想是集成多个弱分类器,然后线性组合成为强分类器.为什么弱分类算法可以通过线性组合形成强分类算法?其实这是有一定的理论基础的.1988年,Kearns和Valiant首先提出了“强可学习”和“弱可学习”的概念,他们指出,在概率近似正确(Probably Approximately Correct, PAC)学习的框架中,一个概念,如果存在一个多项式的学习算法能够学习它,并且正确率很高,那么就称这个概念是强可学习的:如果正确率只是…
怎样评价我们的学习算法得到的假设以及如何防止过拟合和欠拟合的问题. 当我们确定学习算法的参数时,我们考虑的是选择参数来使训练误差最小化.有人认为,得到一个很小的训练误差一定是一件好事.但其实,仅仅是因为这个假设具有很小的训练误差,当将其样本量扩大时,会发现训练误差变大了,这说明它不是一个好的假设.比如下图,拟合的非常好,一旦样本量改变,其训练误差随之增大. 那么我们如何判断一个假设是否是过拟合的呢?我们可以画出假设函数h(x),然后观察.但对于更一般的情况,特征有很多个,比如下图.想要通过画出假…
原文:https://herbertmj.wikispaces.com/stacking%E7%AE%97%E6%B3%95 stacked 产生方法是一种截然不同的组合多个模型的方法,它讲的是组合学习器的概念,但是使用的相对于bagging和boosting较少,它不像bagging和boosting,而是组合不同的模型,具体的过程如下:1.划分训练数据集为两个不相交的集合.2. 在第一个集合上训练多个学习器.3. 在第二个集合上测试这几个学习器4. 把第三步得到的预测结果作为输入,把正确的回…
附上代码加数据地址 https://github.com/Liuyubao/transfer-learning ,欢迎参考. 一.Inception-V3模型 1.1 详细了解模型可参考以下论文: [v1] Going Deeper with Convolutions, 6.67% test error http://arxiv.org/abs/1409.4842 [v2] Batch Normalization: Accelerating Deep Network Training by Re…
迁移学习教程 来自这里. 在本教程中,你将学习如何使用迁移学习来训练你的网络.在cs231n notes你可以了解更多关于迁移学习的知识. 在实践中,很少有人从头开始训练整个卷积网络(使用随机初始化),因为拥有足够大小的数据集相对较少.相反,通常在非常大的数据集(例如ImageNet,它包含120万幅.1000个类别的图像)上对ConvNet进行预训练,然后使用ConvNet作为初始化或固定的特征提取器来执行感兴趣的任务. 两个主要的迁移学习的场景如下: Finetuning the conve…
参考:登上<Cell>封面的AI医疗影像诊断系统:机器之心专访UCSD张康教授 Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning 2018-2-22 Cell 读<Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning> 没有问题就无法学习: 1. 文中的数据规模…
from:https://blog.csdn.net/xjz18298268521/article/details/79079008 NASNet总结 论文:<Learning Transferable Architectures for Scalable Image Recognition> 注   先啥都不说,看看论文的实验结果,图1和图2是NASNet与其他主流的网络在ImageNet上测试的结果的对比,图3是NASNet迁移到目标检测任务上的检测结果,从这图瞬间感觉论文的厉害之处了,值…
DDos攻击本质上是时间序列数据,t+1时刻的数据特点和t时刻强相关,因此用HMM或者CRF来做检测是必然!——和一个句子的分词算法CRF没有区别!注:传统DDos检测直接基于IP数据发送流量来识别,通过硬件防火墙搞定.大数据方案是针对慢速DDos攻击来搞定.难点:在进行攻击的时候,攻击数据包都是经过伪装的,在源IP 地址上也是进行伪造的,这样就很难对攻击进行地址的确定,在查找方面也是很难的.这样就导致了分布式拒绝服务攻击在检验方法上是很难做到的.领域知识见:http://blog.csdn.n…
迁移学习的两个主要场景 微调CNN:使用预训练的网络来初始化自己的网络,而不是随机初始化,然后训练即可 将CNN看成固定的特征提取器:固定前面的层,重写最后的全连接层,只有这个新的层会被训练 下面修改预训练好的resnet18网络在私人数据集上进行训练来分类蚂蚁和蜜蜂 数据集下载 这里使用的数据集包含ants和bees训练图片各约120张,验证图片各75张.由于数据样本非常少,如果从0初始化一个网络进行训练很难有令人满意的结果,这时候迁移学习就派上了用场.数据集下载地址,下载后解压到项目目录 导…
代码: # -*- coding: utf-8 -*- import random import gym import numpy as np from collections import deque from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam from keras.utils.vis_utils import plot_model EP…
摘自:http://blog.fens.me/mahout-recommendation-api/ 测试程序:RecommenderTest.java 测试数据集:item.csv 1,101,5.0 1,102,3.0 1,103,2.5 2,101,2.0 2,102,2.5 2,103,5.0 2,104,2.0 3,101,2.5 3,104,4.0 3,105,4.5 测试程序:org.conan.mymahout.recommendation.job.RecommenderTest.…
从概念上讲.指针从本质上讲就是存放变量地址的一个变量,在逻辑上是独立的,它可以被改变,包括其所指向的地址的改变和其指向的地址中所存放的数据的改变. 而引用是一个别名,它在逻辑上不是独立的,它的存在具有依附性,所以引用必须在一开始就被初始化,而且其引用的对象在其整个生命周期中是不能被改变的(自始至终只能依附于同一个变量). 在C++中,指针和引用经常用于函数的参数传递,然而,指针传递参数和引用传递参数是有本质上的不同的: 指针传递参数本质上是值传递的方式,它所传递的是一个地址值.值传递过程中,被调…
引言   刚进入人工智能实验室,不知道是在学习机器学习还是深度学习,想来他俩可能是一个东西,查阅之后才知道这是两个领域,或许也有些交叉,毕竟我也刚接触,不甚了解.   在我还是个纯度小白之时,写下这篇文章,希望后来同现在的我一样,刚刚涉足此领域的同学能够在这,跨越时空,在小白与小白的交流中得到些许帮助. 开始   在只会一些python语法,其他啥都没有,第一周老师讲了一些机器学习和深度学习的了解性内容,就给了一个实验,让我们一周内弄懂并跑出来,其实老师的代码已经完成了,我们可以直接放进Pych…
ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 Microsoft.ML 1.5.0 动态API 最新 控制台应用程序和Web应用程序 图片文件 图像分类 基于迁移学习的TensorFlow模型再训练进行图像分类 DNN架构:ResNet.InceptionV3.MobileNet等 问题 图像分类是深度学习学科中的一个常见问题.此示例演示如何通过基于迁移学习方法训练模型来创建您自己的自定义图像分类器,该方法基本上是重新训练预先训练的模型(如Incept…
一,什么是BP "BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一.BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.BP神经网络模型拓扑结构包括输入层(input).隐层(hide layer)和输出层(output…
(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法.   而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一…
各大公司广泛使用的在线学习算法FTRL详解 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression),而传统的批量(batch)算法无法有效地处理超大规模的数据集和在线数据流,google先后三年时间(2010年-2013年)从理论研究到实际工程化实现的FTRL(Follow-the-regularized-Leader)算法,在处理诸如逻辑回归之类的带非光滑正则化项(例如1范数,做模型复杂度控制和稀疏化)的凸优化问题上性能非常出色,据闻国内各大互联网公司都第一时间应…
转载请注明本文链接:http://www.cnblogs.com/EE-NovRain/p/3810737.html 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression),而传统的批量(batch)算法无法有效地处理超大规模的数据集和数据流,google先后三年时间(2010年-2013年)从理论研究到实际工程化实现的 FTRL(Follow-the-regularized-Leader) 算法,在处理诸如逻辑回归之类的带非光滑正则化项(例如1范数,做模型复杂度控…
说起来这门技术大多是秀的成分高于实际,但是呢,其也可以作为图像增强的工具,看到一些比赛拿他作训练集扩充,还是一个比较好的思路.如何在caffe上面实现简单的风格转化呢? 好像网上的博文都没有说清楚,而且笔者也没有GPU机器,于是乎,走上了漫漫的研究逼死自己之路... 作者实践机器配置: 服务器:ubuntu16.04(8 core)+caffe+only CPU 突然觉得楷体是不是好看多了...哈哈,接下来的博客要改字体喽~ ------------------------------ 一.图像…