Shuffle本意是 混洗, 洗牌的意思, 在MapReduce过程中需要各节点上同一类数据汇集到某一节点进行计算,把这些分布在不同节点的数据按照一定的规则聚集到一起的过程成为Shuffle. 在Hadoop的MapReduce框架中, Shuffle是连接Map和Reduce之间的桥梁, Map的数据要用到Reduce中必须经过Shuffle这个环节. 由于Shuffle涉及到磁盘的读写和网络的传输, 所以Shuffle的性能高低直接影响到整个程序的性能和吞吐量. MapReduce中的Shu…
本文以WordCount为例, 画图说明spark程序的执行过程 WordCount就是统计一段数据中每个单词出现的次数, 例如hello spark hello you 这段文本中hello出现2次, spark出现1次, you出现1次. 先上完整代码: object WordCount { def main(args: Array[String]) { val conf = new SparkConf().setAppName("WordCount"); val sc = new…
Shuffle简介 Shuffle的本意是洗牌.混洗的意思,把一组有规则的数据尽量打乱成无规则的数据.而在MapReduce中,Shuffle更像是洗牌的逆过程,指的是将map端的无规则输出按指定的规则"打乱"成具有一定规则的数据,以便reduce端接收处理.其在MapReduce中所处的工作阶段是map输出后到reduce接收前,具体可以分为map端和reduce端前后两个部分. 在shuffle之前,也就是在map阶段,MapReduce会对要处理的数据进行分片(split)操作,…
彻底理解MapReduce shuffle过程原理 MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据. 为什么MapReduce计算模型需要Shuffle过程?我们都知道MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Redu…
WordCount是一个入门的MapReduce程序(从src\examples\org\apache\hadoop\examples粘贴过来的): package org.apache.hadoop.examples; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path…
本期内容 : spark streaming另类在线实验 瞬间理解spark streaming本质 一.  我们最开始将从Spark Streaming入手 为何从Spark Streaming切入Spark定制?Spark的子框架已有若干,为何选择Spark Streaming?让我们细细道来. 1.  Spark最开始只有Spark Core,没有目前的这些子框架.这些子框架是构建于Spark Core之上的.没有哪个子框架能摆脱Spark Core.我们通过对一个框架的彻底研究,肯定可以…
摘要: 通过腾讯shuffle部署对shuffle过程进行详解 摘要:腾讯分布式数据仓库基于开源软件Hadoop和Hive进行构建,TDW计算引擎包括两部分:MapReduce和Spark,两者内部都包含了一个重要的过程—Shuffle.本文对Shuffle过程进行解析,并对两个计算引擎的Shuffle过程进行比较. 腾讯分布式数据仓库(Tencent distributed Data Warehouse, 简称TDW)基于开源软件Hadoop和Hive进行构建,并且根据公司数据量大.计算复杂等…
源文件放在github,随着理解的深入,不断更新,如有谬误之处,欢迎指正.原文链接https://github.com/jacksu/utils4s/blob/master/spark-knowledge/md/sort-shuffle.md 正如你所知,spark实现了多种shuffle方法,通过 spark.shuffle.manager来确定.暂时总共有三种:hash shuffle.sort shuffle和tungsten-sort shuffle,从1.2.0开始默认为sort sh…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 随着Spark的逐渐成熟完好, 越来越多的可配置參数被加入到Spark中来, 在Spark的官方文档http://spark.apache.org/docs/latest/configuration.html 中提供了这些可配置參数中相当大一部分的说明. 可是文档的更新总是落后于代码的开发的, 另一些配置參数没有来得及被加入到这…
Google工程师将MapReduce定义为一般的数据处理流程.一直以来不能完全理解MapReduce的真义,为什么MapReduce可以“一般”? 最近在研究Spark,抛开Spark核心的内存计算,这里只关心Spark做了什么.在Spark上的所有工作都是围绕数据集进行,包括创建新的数据集.对数据集的转换.对数据集的归约.对于实际应用中的数据处理流程,Spark的这些似乎足够了,足够形成一套一般的数据处理流程.的确,Spark以数据集为操作对象,而可以不论数据集中数据的类型——很朴素的思想!…