首先让我们回顾下上节课讲的,用牛顿法计算√2的内容: 简单来说,牛顿法从x0=1不断向后计算逼近√2的值,而刚开始计算的精度是1,随着牛顿法的逼近(共log2d个循环),就能使得√2逼近值的精度达到d.在逼近过程中,精度的变化为Quadratic convergence二次收敛趋势(即1,2,4,6,....),为了证明这个,讲师给出了下图内容: 假设xn = √a (1+εn) 且εn随着n增加,不断趋于0,本质上来说就是xn = √a,加了(1+εn)是为了方便我们证明二次收敛的存在.之后根…