Go 分布式令牌桶限流 + 兜底策略】的更多相关文章

上篇文章提到固定时间窗口限流无法处理突然请求洪峰情况,本文讲述的令牌桶线路算法则可以比较好的处理此场景. 工作原理 单位时间按照一定速率匀速的生产 token 放入桶内,直到达到桶容量上限. 处理请求,每次尝试获取一个或多个令牌,如果拿到则处理请求,失败则拒绝请求. 优缺点 优点 可以有效处理瞬间的突发流量,桶内存量 token 即可作为流量缓冲区平滑处理突发流量. 缺点 实现较为复杂. 代码实现 core/limit/tokenlimit.go 分布式环境下考虑使用 redis 作为桶和令牌的…
RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率. 通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位时间内的访问量,譬如一些第三方服务会对用户访问量进行限制:限制网速,单位时间内只允许上传下载多少字节等. guava的maven依赖 <dependency> <groupId>com.google.guava</groupId> <artifactId>guav…
在限流时一般会限制每秒或每分钟的请求数,简单点一般会采用计数器算法,这种算法实现相对简单,也很高效,但是无法应对瞬时的突发流量. 比如限流每秒100次请求,绝大多数的时间里都不会超过这个数,但是偶尔某一秒钟会达到120次请求,接着很快又会恢复正常,假设这种突发的流量不会对系统稳定性带来实质性的影响,则可以在一定程度上允许这种瞬时的突发流量,从而为用户带来更好的可用性体验.这就是令牌桶算法的用武之地. 该算法的基本原理是:有一个令牌桶,容量是X,每Y单位时间会向桶中放入Z个令牌,如果桶中的令牌数超…
1,RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率.通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位时间内的访问量,譬如一些第三方服务会对用户访问量进行限制:限制网速,单位时间内只允许上传下载多少字节等. guava的maven依赖 <dependency> <groupId>com.google.guava</groupId> <artifactId>gua…
一 .场景描述 在开发接口服务器的过程中,为了防止客户端对于接口的滥用,保护服务器的资源, 通常来说我们会对于服务器上的各种接口进行调用次数的限制.比如对于某个 用户,他在一个时间段(interval)内,比如 1 分钟,调用服务器接口的次数不能够 大于一个上限(limit),比如说 100 次.如果用户调用接口的次数超过上限的话,就直接拒绝用户的请求,返回错误信息. 服务接口的流量控制策略:分流.降级.限流等.本文讨论下限流策略,虽然降低了服务接口的访问频率和并发量,却换取服务接口和业务应用系…
限流 限流又称为流量控制(流控),通常是指限制到达系统的并发请求数. 我们生活中也会经常遇到限流的场景,比如:某景区限制每日进入景区的游客数量为8万人:沙河地铁站早高峰通过站外排队逐一放行的方式限制同一时间进入车站的旅客数量等. 限流虽然会影响部分用户的使用体验,但是却能在一定程度上保障系统的稳定性,不至于崩溃(大家都没了用户体验). 而互联网上类似需要限流的业务场景也有很多,比如电商系统的秒杀.微博上突发热点新闻.双十一购物节.12306抢票等等.这些场景下的用户请求量通常会激增,远远超过平时…
一 .场景描述 在开发接口服务器的过程中,为了防止客户端对于接口的滥用,保护服务器的资源, 通常来说我们会对于服务器上的各种接口进行调用次数的限制.比如对于某个 用户,他在一个时间段(interval)内,比如 1 分钟,调用服务器接口的次数不能够 大于一个上限(limit),比如说 100 次.如果用户调用接口的次数超过上限的话,就直接拒绝用户的请求,返回错误信息. 服务接口的流量控制策略:分流.降级.限流等.本文讨论下限流策略,虽然降低了服务接口的访问频率和并发量,却换取服务接口和业务应用系…
国际惯例原理图 代码实现 package Thread; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicLong; /** * @ProjectName: cutter-point * @Package: Thread * @ClassName: RateLimiter * @Autho…
互联网服务赖以生存的根本是流量, 产品和运营会经常通过各种方式来为应用倒流,比如淘宝的双十一等,如何让系统在处理高并发的同时还是保证自身系统的稳定, 通常在最短时间内提高并发的做法就是加机器, 但是如果机器不够怎么办? 那就需要做业务降级或系统限流. 流量控制中用的比较多的三个算法就是令牌桶.漏桶.计数器. 一.令牌桶限流(TokenBucket)令牌桶算法的基本过程如下: 每秒会有 r 个令牌放入桶中,或者说,每过 1/r 秒桶中增加一个令牌. 桶中最多存放 b 个令牌,如果桶满了,新放入的令…
本文档不会是最新的,最新的请看Github! 1.简介 基于令牌桶算法和漏桶算法实现的纳秒级分布式无锁限流插件,完美嵌入SpringBoot.SpringCloud应用,支持接口限流.方法限流.系统限流.IP限流.用户限流等规则,支持设置系统启动保护时间(保护时间内不允许访问),提供快速失败与CAS阻塞两种限流方案,开箱即用. 2.Maven <dependency> <groupId>cn.yueshutong</groupId> <artifactId>…