图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 B(G).其中 T(G)是遍历图时所经过的边的集合,B(G) 是遍历图时未经过的边的集合.显然,G1(V, T) 是图 G 的极小连通子图,即子图G1 是连通图 G 的生成树. 深度优先生成森林   右边的是深度优先生成森林: 连通图的生成树不一定是唯一的,不同的遍历图的方法得到不同的生成树;从不…
链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M<=200000) 接下来M行每行包含三个整数Xi.Yi.Zi,表示有一条长度为Zi的无向边连接结点Xi.Yi 输出格式: 输出包含一个数,即最小生成树的各边的长度之和:如果该图不连通则输出orz 输入输出样例 输入样例#1: 4 5 1 2 2 1 3 2 1 4 3 2 3 4 3 4 3 输出样例#1…
我们在前面讲过的<克里姆算法>是以某个顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树的.同样的思路,我们也可以直接就以边为目标去构建,因为权值为边上,直接找最小权值的边来构建生成树也是很自然的想法,只不过构建时要考虑是否会形成环而已,此时我们就用到了图的存储结构中的边集数组结构,如图7-6-7 假设现在我们已经通过邻接矩阵得到了边集数组edges并按权值从小到大排列如上图. 下面我们对着程序和每一步循环的图示来看: 算法代码:(改编自<大话数据结构>)  C++ Code …
# include <stdio.h> # define MAX_VERTEXES //最大顶点数 # define MAXEDGE //边集数组最大值 # define INFINITY //代表不可能的数(无穷大) typedef struct {//图 结构体定义 int arc[MAX_VERTEXES][MAX_VERTEXES];//二位数组 矩阵 int numVertexes, numEdges;//当前图中的顶点数和边数 }MGraph; typedef struct {//…
/* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <string> #include <algorithm> #include <queue> #include <set> #include <stack> using namespace…
[0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解 Kruskal(克鲁斯卡尔)算法 的idea 并用 源代码加以实现: 0.2)最小生成树的基础知识,参见 http://blog.csdn.net/pacosonswjtu/article/details/49947085 [1] Kruskal 算法(使用到了不相交集ADT的union/find 操作) 1.1)第二种贪婪策略是: 连续地按照最小的权选择边, 并且当所选的边不产生圈时就可以吧它作为取定…
题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈. 思路简介:对比普里姆和克鲁斯卡尔算法,克鲁斯卡尔算法主要针对边来展开,边数少时效率比较高,所以对于稀疏图有较大的优势:而普里姆算法对于稠密图,即边数非常多的情况下更好一些.其思路为将边按照权值从小到大排列,先取出最小的边,,再取出第二小的边,直到连接所有顶点,其中要注意不能将同一条边连接在同一颗…
#include <iostream> #include <string> using namespace std; typedef struct MGraph{ string vexs[10];//顶点信息 int arcs[10][10];//邻接矩阵 int vexnum, arcnum;//顶点数和边数 }MGraph; int LocateVex(MGraph G, string u)//返回顶点u在图中的位置 { for(int i=0; i<G.vexnum;…
目录 应用场景-公交站问题 克鲁斯卡尔算法介绍 克鲁斯卡尔算法图解 克鲁斯卡尔算法分析 如何判断回路? 代码实现 无向图构建 克鲁斯卡尔算法实现 获取一个点的终点解释 应用场景-公交站问题 某城市新增 7 个站点(A, B, C, D, E, F, G) ,现在 需要修路把 7 个站点连通,各个站点的距离用边线表示(权) ,比如 A – B 距离 12公里 问:如何修路保证 各个站点都能连通,并且 总的修建公路总里程最短? 如上图所示:要求和前面的普利姆算法中的修路问题是一样的要求,只是换了一个…
文字描述 上一篇博客介绍了最小生成树(普里姆算法),知道了普里姆算法求最小生成树的时间复杂度为n^2, 就是说复杂度与顶点数无关,而与弧的数量没有关系: 而用克鲁斯卡尔(Kruskal)算法求最小生成树则恰恰相反.它的时间复杂度为eloge (e为网中边的数目),因此它相对于普里姆算法而言,适合于求边稀疏的网的最小生成树. 克鲁斯卡尔算法求最小生成树的步骤为:假设连通网N={V,{E}}, 则令最小生成树的初始状态为只有n个顶点而无边的非连通图 T=(V, {}}, 图中每个顶点自成一个连通分量…