目录 概 主要内容 代码 Jiang Z., Chen T., Chen T. & Wang Z. Robust Pre-Training by Adversarial Contrastive Learning. NIPS, 2020. 概 本文介绍了一种利用对比学习进行对抗预训练的方法. 主要内容 思想是很简单的, 就是利用对比学习进行训练(样本的augumentation多一个\(\delta\)), 然后再通过此方法训练得到的参数进行finetune. 比较特别的是, 有三种预训练的方案:…
目录 概 主要内容 reweight 拟合概率 实验的细节 疑问 Bai T., Chen J., Zhao J., Wen B., Jiang X., Kot A. Feature Distillation With Guided Adversarial Contrastive Learning. arXiv preprint arXiv 2009.09922, 2020. 概 本文是通过固定教师网络(具有鲁棒性), 让学生网络去学习教师网络的鲁棒特征. 相较于一般的distillation…
论文信息 论文标题:Rumor Detection on Social Media with Graph AdversarialContrastive Learning论文作者:Tiening Sun.Zhong Qian.Sujun Dong论文来源:2022, WWW论文地址:download论文代码:download Abstract 尽管基于GNN的方法在谣言检测领域取得了一些成功,但是这些基于交叉熵损失的方法常常导致泛化能力差,并且缺乏对一些带有噪声的或者对抗性的样本的鲁棒性,尤其是一…
目录 概 主要内容 Linear Part 代码 Kim M., Tack J. & Hwang S. Adversarial Self-Supervised Contrastive Learning. In Advances in Neural Information Processing Systems, 2020. 概 这篇文章提出了对比学习结合adversarial training的一个思路. 主要内容 对比学习的强大之处在于正负样本对的构造, 一个结合adversarial trai…
论文信息 论文标题:Towards Robust False Information Detection on Social Networks with Contrastive Learning论文作者:Chunyuan Yuan, Qianwen Ma, Wei Zhou, Jizhong Han, Songlin Hu论文来源:2019,CIKM论文地址:download 论文代码:download 1 Introduction 问题:会话图中轻微的扰动讲导致现有模型的预测崩溃. 研究了两大…
论文信息 论文标题:Towards Robust Graph Contrastive Learning论文作者:Nikola Jovanović, Zhao Meng, Lukas Faber, Roger Wattenhofer论文来源:2021, arXiv论文地址:download 论文代码:download 1 Introduction 创新点:从对抗攻击和对抗防御考虑数据增强策略. 2 Graph robust contrastive learning 2.1 Background 目…
本文首发于微信公众号「对白的算法屋」,来一起学AI叭 大家好,卷王们and懂王们好,我是对白. 本次我挑选了ICLR2021中NLP领域下的六篇文章进行解读,包含了文本生成.自然语言理解.预训练语言模型训练和去偏.以及文本匹配和文本检索.从这些论文的思想中借鉴了一些idea用于公司自身的业务中,最终起到了一个不错的效果. 1.Contrastive Learning with Adversarial Perturbations for Conditional Text Generation 任务…
论文标题:Prototypical Contrastive Learning of Unsupervised Representations 论文方向:图像领域,提出原型对比学习,效果远超MoCo和SimCLR 论文来源:ICLR2021 论文链接:https://arxiv.org/abs/2005.04966 论文代码:https://github.com/salesforce/PCL Part1 概述 本文提出了一个将对比学习与聚类联系起来的无监督表示学习方法:Prototypical C…
目录 概 主要内容 流程 projection head g constractive loss augmentation other 代码 Chen T., Kornblith S., Norouzi M., Hinton G. A Simple Framework for Contrastive Learning of Visual Representations. arXiv: Learning, 2020. @article{chen2020a, title={A Simple Fram…
论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者:Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, Stan Z. Li论文来源:2022, WWW论文地址:download 论文代码:download 1 Introduction 对比学习种数据增强存在的三个问题: First, the augmentati…