Ng ML笔记】的更多相关文章

目录 一.线性回归 1,假设函数.代价函数,梯度下降 2,特征处理 3,代价函数和学习速率 4,特征和多项式回归 5,正规方程 二.逻辑回归(Logistic Regression,LR) 1,假设函数 2,代价函数 3,梯度下降算法 4,高级算法 三.正则化 1,过拟合 2,正则化 3,正则化线性回归 4,正则化逻辑回归 四.神经网络 1,正向传播算法 2,反向传播算法 3,梯度检验.随机初始化 五.应用机器学习的建议 六.支持向量机SVM 1,代价函数 2,核函数 3,参数的影响,其他核函数…
[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation http://blog.csdn.net/walilk/article/details/50922854…
前言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自Standford Andrew Ng老师在Coursera的教程,同时也参考了大量网上的相关资料(在后面列出). 本文主要记录我在学习神经网络过程中的心得笔记,共分为三个部分: Neural network - Representation:神经网络的模型描述: Neural network - Learning:神经网络的模型训练…
1  定义 机器学习 (Machine Learning):improving some performance measure with experience computed from data 2  应用举例 ML:an alternative route to build complicated systems 2.1  股票预测   2.2  图像识别 2.3  衣食住行    2.4  关键要素 在决定某些应用场景,是否适合使用机器学习时,常考虑以下三个要素: 1) exists s…
第三部分: 1.指数分布族 2.高斯分布--->>>最小二乘法 3.泊松分布--->>>线性回归 4.Softmax回归 指数分布族: 结合Ng的课程,在看这篇博文:http://blog.csdn.net/acdreamers/article/details/44663091 泊松分布: 这里是一个扩展,看不看都可以:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html Softmax回归:…
之前经学长推荐,开始在B站上看Andrew Ng的机器学习课程.其实已经看了1/3了吧,今天把学习笔记补上吧. 吴恩达老师的Machine learning课程共有113节(B站上的版本https://www.bilibili.com/video/av9912938).这篇学习笔记是结合第一.二部分(我所理解的): 第一部分:概览机器学习,介绍其中的一些专业名词及定义.Section 1-26 第二部分:如何使用Octave实现机器学习中的基本算法(Ocatave就是开源版的Matlab).Se…
大概用了一个月,Andrew Ng老师的机器学习视频断断续续看完了,以下是个人学习笔记,入门级别,权当总结.笔记难免有遗漏和误解,欢迎讨论. 鸣谢:中国海洋大学黄海广博士提供课程视频和个人笔记,在此深表感谢!…
大概用了一个月,Andrew Ng老师的机器学习视频断断续续看完了,以下是个人学习笔记,入门级别,权当总结.笔记难免有遗漏和误解,欢迎讨论. 鸣谢:中国海洋大学黄海广博士提供课程视频和个人笔记,在此深表感谢!…
大概用了一个月,Andrew Ng老师的机器学习视频断断续续看完了,以下是个人学习笔记,入门级别,权当总结.笔记难免有遗漏和误解,欢迎讨论. 鸣谢:中国海洋大学黄海广博士提供课程视频和个人笔记,在此深表感谢!…
大概用了一个月,Andrew Ng老师的机器学习视频断断续续看完了,以下是个人学习笔记,入门级别,权当总结.笔记难免有遗漏和误解,欢迎讨论. 鸣谢:中国海洋大学黄海广博士提供课程视频和个人笔记,在此深表感谢!…