TVM将深度学习模型编译为WebGL】的更多相关文章

使用TVM将深度学习模型编译为WebGL TVM带有全新的OpenGL / WebGL后端! OpenGL / WebGL后端 TVM已经瞄准了涵盖各种平台的大量后端:CPU,GPU,移动设备等.这次,添加了另一个后端:OpenGL / WebGL. OpenGL / WebGL使能够在未安装CUDA的环境中利用GPU.在浏览器中使用GPU的方法. 后端允许以3种不同的方式使用OpenGL / WebGL: 本地OpenGL:可以将深度学习模型编译为OpenGL,完全使用Python在本地计算机…
本文适合有 Java 基础的人群 作者:DJL-Keerthan&Lanking HelloGitHub 推出的<讲解开源项目> 系列.这一期是由亚马逊工程师:Keerthan Vasist,为我们讲解 DJL(完全由 Java 构建的深度学习平台)系列的第 4 篇. 一.前言 很长时间以来,Java 都是一个很受企业欢迎的编程语言.得益于丰富的生态以及完善维护的包和框架,Java 拥有着庞大的开发者社区.尽管深度学习应用的不断演进和落地,提供给 Java 开发者的框架和库却十分短缺.…
CUDA上深度学习模型量化的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数都用诸如int8和float16低精度数据类型表示.降低的数据带宽减少了推理时间和存储器/存储要求,以及功耗.在适当的量化方案下,可以最小化量化模型的精度下降.因此,量化模型特别适合研究人员和开发人员,使大型模型适合在各种设备(例如GPU,CPU和移动设备)上部署. 通常通过手工微内核,针对不同的工…
CUDA上的量化深度学习模型的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数都用诸如int8和的低精度数据类型表示float16.降低的数据带宽减少了推理时间和存储器/存储需求,以及功耗.同时,在适当的量化方案下,可以最小化量化模型的精度下降.量化模型特别适合研究人员和开发人员,使大型模型适合在各种设备(例如GPU,CPU和移动设备)上部署. 以前,通常通过手工微内核针对…
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公式,也就是神经网络的前向算法.我们一般使用现成的网络,如inceptionV4,mobilenet等. 定义loss,选择优化器,来让loss最小 对数据进行迭代训练,使loss到达最小 在测试集或者验证集上对准确率进行评估 下面我们来看深度学习模型训练中遇到的难点及如何解决 2 模型训练难点及解决…
转载自知乎:Roofline Model与深度学习模型的性能分析 在真实世界中,任何模型(例如 VGG / MobileNet 等)都必须依赖于具体的计算平台(例如CPU / GPU / ASIC 等)才能展现自己的实力.此时,模型和计算平台的"默契程度"会决定模型的实际表现.Roofline Model 提出了使用 Operational Intensity(计算强度)进行定量分析的方法,并给出了模型在计算平台上所能达到理论计算性能上限公式. 一.指标介绍 1.计算平台的两个指标:算…
话不多说,直接上代码 def stacking_first(train, train_y, test): savepath = './stack_op{}_dt{}_tfidf{}/'.format(args.option, args.data_type, args.tfidf) os.makedirs(savepath, exist_ok=True) count_kflod = 0 num_folds = 6 kf = KFold(n_splits=num_folds, shuffle=Tru…
当你的深度学习模型变得很多时,选一个确定的模型也是一个头痛的问题.或者你可以把他们都用起来,就进行模型融合.我主要使用stacking和blend方法.先把代码贴出来,大家可以看一下. import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import roc_curve SEED = 222 np.random.seed(SEED) from sklearn.mod…
  利用 TFLearn 快速搭建经典深度学习模型 使用 TensorFlow 一个最大的好处是可以用各种运算符(Ops)灵活构建计算图,同时可以支持自定义运算符(见本公众号早期文章<TensorFlow 增加自定义运算符>).由于运算符的粒度较小,在构建深度学习模型时,代码写出来比较冗长,比如实现卷积层:5, 9 这种方式在设计较大模型时会比较麻烦,需要程序员徒手完成各个运算符之间的连接,像一些中间变量的维度变换.运算符参数选项.多个子网络连接处极易发生问题,肉眼检查也很难发现代码中潜伏的…
原文链接: https://zhuanlan.zhihu.com/p/34204282 最近在不同的计算平台上验证几种经典深度学习模型的训练和预测性能时,经常遇到模型的实际测试性能表现和自己计算出的复杂度并不完全吻合的现象,令人十分困惑.机缘巧合听了Momenta的技术分享后,我意识到问题的答案其实就在于 Roof-line Model 这个理论,于是认真研究了一下相关论文.现在把自己的心得总结出来,分享给大家. 在真实世界中,任何模型(例如 VGG / MobileNet 等)都必须依赖于具体…