Spectral Graph Theory的一些定理】的更多相关文章

邻接矩阵的特征值和特征向量不会随着节点的排列不同而变化.两个图同构可以推出他们的邻接矩阵具有相同的特征值和特征向量,但是反过来不行.…
拉普拉斯矩阵(Laplacian matrix),也称为导纳矩阵(Admittance matrix)或者基尔霍夫矩阵(Kirchohoff matrix) 归一化的拉普拉斯矩阵定义为 例子: 拉普拉斯矩阵性质: (1)对称半正定矩阵 (2)最小特征值为0 证明:* = (- ) * = 0 = 0 *  (3)任何一个属于实向量,有以下式子成立 证明: 谱聚类: 矩阵的谱半径就是指矩阵的特征值中绝对值最大的那个.ρ(A)=max{|λi|,i=1,2,……n} 为A的谱半径. ρ(A)≤║A║…
Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems.[J]. Nature Reviews Neuroscience, 2009, 10(3):186-198. Graph measures A graph G consisting of a set of…
主题链接:pid=2454">http://acm.hdu.edu.cn/showproblem.php?pid=2454 Problem Description Wang Haiyang is a strong and optimistic Chinese youngster. Although born and brought up in the northern inland city Harbin, he has deep love and yearns for the bound…
CF1109D Sasha and Interesting Fact from Graph Theory 这个 \(D\) 题比赛切掉的人基本上是 \(C\) 题的 \(5,6\) 倍...果然数学计数问题比数据结构更受欢迎... 以下大致翻译自官方题解. 枚举 \(a\to b\) 路径上边的数目,记为 \(edges\) . 先来考虑给定的两个点路径上的 \(edges-1\) 个点(不含 \(a,b\) )和 \(edge\) 条边. 节点有\(edges-1\)个,顺序不同则最后的树不同…
1 图论概述 1.1 发展历史 第一阶段: 1736:欧拉发表首篇关于图论的文章,研究了哥尼斯堡七桥问题,被称为图论之父 1750:提出了拓扑学的第一个定理,多面体欧拉公式:V-E+F=2 第二阶段(19~20世纪): 1852: Francis Guthrie提出四色问题 1856: Thomas P. Kirkman & William R.Hamilton研究了哈密尔顿图 1878: Alfred Kempe给出给出四色定理证明 1890: 希伍德(Heawood)推翻原有四色定理证明 1…
The Beginning of the Graph Theory 是的,这不是一道题.最近数论刷的实在是太多了,我要开始我的图论与树的假期生活了. 祝愿我吧??!ShuraK...... poj1847 poj1125 neooj1339 neooj1374 neooj1574 neooj1497 poj1251 poj1789 poj2421(实现给出几条边,求最小生成树) poj2031(空间内n个球,代价是球心距-半径和,求最小生成树) jdoj1588(tarjan裸题) jdoj10…
Sasha and Interesting Fact from Graph Theory n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m} 然后就没啥难度了... #include<bits/stdc++.h> #define LL long long #define LD long double #define ull unsigned long long #define fi first #define se second #defin…
Graph Theory                                                                 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)                                                                                        …
Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 解题思路: 这题我根本不会做,是周指导带飞我. 首先对于当前已经有 \(m\) 个联通块的有标号生成树的数量是 \[ n^{m-2}\prod_{i=1}^msize_i \] 其中 \(size_i\) 是第 \(i\) 个联通块的大小. 原理就是考虑 \(prufer\) 编码,先把每个联通块看成一个点,那么序列中每出现一个第 \(i\) 联通块缩成的点,能连的边的数…