首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
「TJOI2013」循环格
】的更多相关文章
「TJOI2013」循环格
题目链接 戳我 \(Solution\) 我们观察发现循环格要满足每个点的入度都为\(1\) 证明: 我们假设每个点的入读不一定为\(1\),那么必定有一个或多个点的入度为0,那么则不满足循环格的定义,所以假设错误.所以每个点的入度必然为1. 所以这样我们就可以开始建图了.先进行拆点操作,将每个点拆成\(x\)和\(x'\)将\(x\)和\(S\)连接,流量为\(1\),费用为\(0\)再将\(x'\)和\(T\)连接,流量为\(1\),费用为\(0\) 最后对于每个点\(x\)将它和四周的\(…
LibreOJ2085 - 「NOI2016」循环之美
Portal Description 给出\(n,m(n,m\leq10^9)\)和\(k(k\leq2000)\),求在\(k\)进制下,有多少个数值不同的纯循环小数可以表示成\(\dfrac{x}{y}\)的形式,其中\(x\in[1,n],y\in[1,m]\).一个数是纯循环小数当且仅当它能写成\(a.\dot{c_1} c_2 c_3 \ldots c_{p-1}\dot{c_p}\)的形式. Solution 原题相当于求有多少个数对\((x,y)\)满足\(gcd(x,y)=1\)…
「NOI2016」循环之美 解题报告
「NOI2016」循环之美 对于小数\(\frac{a}{b}\),如果它在\(k\)进制下被统计,需要满足要求并且不重复. 不重复我们确保这个分数是最简分数即\((a,b)=1\) 满足要求需要满足第一位的余数在后面仍然出现,第一位余数是\(a\bmod b\),后面第\(x\)位的余数实际上是\(a\times k^x\bmod b\) 所以我们需要满足 \[ a\equiv a \times k^x\pmod b \] 有解 因为\((a,b)=1\),所以 \[ k^x\equiv 1\…
「TJOI2013」最长上升子序列
「TJOI2013」最长上升子序列 传送门 这个 \(\text{DP}\) 应该都会撒: \[dp_i = \max_{j < i,a_j < a_i}\left\{dp_j\right\} + 1\] 考虑一个性质:加入的数是严格单调递增的,所以我们每次插入一个点时,它之前的所有点都可以成为决策点,并且之前的点的 \(dp\) 值不会被更新,所以我们只需要做到插入点和询问前缀最大值即可,这个用平衡树很好做. 需要注意的是,由于平衡树的每一个节点就是序列中的点,所以在 \(\text{pus…
【BZOJ】【3171】【TJOI2013】循环格
网络流/费用流 最后能走回出发点……说明全部是环= = 而二分图上的环说明什么呢……完备匹配 对于每个点,它都有四个可能的匹配点,且已知它已经(伪)匹配的一个点,那么我们于已知每条(伪)匹配边,我们连(i,j)->(x,y)' 流量为1,费用为0,表示不用修改,然后对(x,y)'我们向另外三个可能的匹配点连边,流量为1,费用为1,表示修改这个点的匹配对象的代价. 然后对于每个点连S->(i,j) 流量为1,费用为0,(i,j)'->T,流量为1,费用为0.保证每个点有且仅有一个匹配点 /…
【刷题】LOJ 2818 「eJOI2018」循环排序
题目描述 本题译自 eJOI2018 Problem F「Cycle Sort」 给定一个长为 \(n\) 的数列 \(\{a_i\}\) ,你可以多次进行如下操作: 选定 \(k\) 个不同的下标 \(i_1, i_2, \cdots, i_k\)(其中 \(1 \le i_j \le n\) ),然后将 \(a_{i_1}\) 移动到下标 \(i_2\) 处,将 \(a_{i_2}\) 移动到下标 \(i_3\) 处,--,将 \(a_{i_{k-1}}\) 移动到下标 \(i_{k}\)…
*LOJ#2085. 「NOI2016」循环之美
$n \leq 1e9,m \leq 1e9,k \leq 2000$,求$k$进制下$\frac{x}{y}$有多少种不同的纯循环数取值,$1 \leq x \leq n,1 \leq y \leq m$.纯循环数是指小数点后直接就开始循环,整数也算. 与上个题的丑陋相比这个题不知道美到哪里去..虽然自己没想出来. 提示说了,出现相同余数时有纯循环.假设循环节是$l$,那么$xk^l$和$x$除$y$会得到相同余数--同余!$xk^l \equiv x (\mod y)$.由于题目要互不相同的…
LOJ 2085: 洛谷 P1587: bzoj 4652: 「NOI2016」循环之美
题目传送门:LOJ #2085. 两个月之前做的傻题,还是有必要补一下博客. 题意简述: 求分子为不超过 \(n\) 的正整数,分母为不超过 \(m\) 的正整数的所有互不相等的分数中,有多少在 \(k\) 进制下的纯循环小数. 题解: 设分子为 \(x\),分母为 \(y\). 首先,因为要求的是互不相等的分数,取最简分数,即 \(x\perp y\). 其次,要求是纯循环小数,考虑竖式除法的过程,可以发现 \(\displaystyle\frac{x}{y}\) 在 \(k\) 进制下纯循环…
「NOI2016」循环之美
P1587 [NOI2016]循环之美 题目描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 $k$ 进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知的十进制数 $n$ 和 $m$,在 $k$ 进制下,有多少个数值上互不相等的纯循环小数,可以用分数 $\frac xy$ 表示,其中 $1≤x≤n,1≤y≤m$,且 $x,y$是整数.一个数是纯循环的,当且仅当其可以写成以下形式: $a.\dot{c_1} c_2…
「NOI2016」循环之美(小性质+min_25筛)
传送门. 题解 感觉这题最难的是第一个结论. x/y首先要互质,然后如果在10进制是纯循环小数,不难想到y不是2.5的倍数就好了. 因为十进制下除以2和5是除得尽的. 必然会多出来的什么东西. 如果是k进制,可以类比得gcd(y,k)=1. 证明: 假设纯循环的位数是l 则\(x*k^l\equiv x(mod~y)\) \(k^l\equiv 1(mod~y)\) 要存在l的话,就必须有\(gcd(k,y)=1\),反过来一样. 反演: \(Ans=\sum_{i=1}^n\sum_{j=1}…