Spark执行流程(转)】的更多相关文章

1. Spark执行流程 知识补充:RDD的依赖关系 RDD的依赖关系分为两类:窄依赖(Narrow Dependency)和宽依赖(Shuffle Dependency) (1)窄依赖 窄依赖指的是父RDD中的一个分区最多只会被子RDD中的一个分区使用,意味着父RDD的一个分区内的数据是不能被分割的,子RDD的任务可以跟父RDD在同一个Executor一起执行,不需要经过Shuffle阶段去重组数据 窄依赖关系划分为两种:一对一依赖(OneToOneDependency)和范围依赖(Range…
   原文地址:http://blog.jobbole.com/102645/     我们使用spark-submit提交一个Spark作业之后,这个作业就会启动一个对应的Driver进程.根据你使用的部署模式(deploy-mode)不同,Driver进程可能在本地启动,也可能在集群中某个工作节点上启动.Driver进程本身会根据我们设置的参数,占有一定数量的内存和CPU core.而Driver进程要做的第一件事情,就是向集群管理器(可以是Spark Standalone集群,也可以是其他…
RDD运行原理 1.创建 RDD 对象 2.DAGScheduler模块介入运算,计算RDD之间的依赖关系.RDD之间的依赖关系就形成了DAG 3.每一个JOB被分为多个Stage,划分Stage的一个主要依据是当前计算因子的输入是否是确定的,如果是则将其分在同一个Stage,避免多个Stage之间的消息传递开销. https://www.cnblogs.com/tgzhu/p/5818374.html…
1.总体执行流程 使用下列代码对SparkSQL流程进行分析.让大家明确LogicalPlan的几种状态,理解SparkSQL总体执行流程 // sc is an existing SparkContext. val sqlContext = new org.apache.spark.sql.SQLContext(sc) // this is used to implicitly convert an RDD to a DataFrame. import sqlContext.implicits…
Spark Streaming 是基于spark的流式批处理引擎,其基本原理是把输入数据以某一时间间隔批量的处理,当批处理间隔缩短到秒级时,便可以用于处理实时数据流. 本节描述了Spark Streaming作业的执行流程. 图1 Spark Streaming作业的执行流程 具体流程: 客户端提交作业后启动Driver,Driver是park作业的Master. 每个作业包含多个Executor,每个Executor以线程的方式运行task,Spark Streaming至少包含一个recei…
Spark job执行流程消息图 1.介绍…
引言 在上两篇文章 spark 源码分析之十九 -- DAG的生成和Stage的划分 和 spark 源码分析之二十 -- Stage的提交 中剖析了Spark的DAG的生成,Stage的划分以及Stage转换为TaskSet后的提交. 如下图,我们在前两篇文章中剖析了DAG的构建,Stage的划分以及Stage转换为TaskSet后的提交,本篇文章主要剖析TaskSet被TaskScheduler提交之后的Task的整个执行流程,关于具体Task是如何执行的两种stage对应的Task的执行有…
一个 Spark 应用程序的完整执行流程 1.编写 Spark Application 应用程序 2.打 jar 包,通过 spark-submit 提交执行 3.SparkSubmit 提交执行 4.执行 Spark Application 的 main 方法 5.初始化 SparkContext,这一步主要是把执行 Application 所需要的一个 Driver 和多个 Executor 启动起来 6.执行到 Action 算子,这个阶段会产生 DAG 血缘依赖关系,但是并没有真正执行…
本文目录 一.Apache Spark 二.Spark SQL发展历程 三.Spark SQL底层执行原理 四.Catalyst 的两大优化 一.Apache Spark Apache Spark是用于大规模数据处理的统一分析引擎,基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量硬件之上,形成集群. Spark源码从1.x的40w行发展到现在的超过100w行,有1400多位大牛贡献了代码.整个Spark框架源码是一个巨大的工程.…
Spark学习笔记总结 02. Spark任务流程 1. RDD的依赖关系 RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency) 窄依赖窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用总结:窄依赖我们形象的比喻为独生子女 宽依赖宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition 总结:窄依赖我们形象的比喻为超生(多个子女)查看RDD依…