决策树 熵的定义 如果一个随机变量X的可能取值为X={x1,x2,..,xk},其概率分布为P(X=x)=pi(i=1,2,...,n),则随机变量X的熵定义为\(H(x) = -\sum{p(x)logp(x)}=\sum{p(x)log{\frac{1}{p(x)}}}\).需要注意的是,熵越大,随机变量的不确定性就越大. 当n = 2的时候,\(H(p)=-plogp-(1-p)log(1-p)\)也就是交叉熵的损失函数. 条件熵 条件熵主要是用来计算,在莫一列数据X选中的条件下,其标签Y…